LCOV - code coverage report
Current view: top level - home/gitlab-runner/builds/q8svuz_Y/0/slepc/petsc/include - petscmath.h (source / functions) Hit Total Coverage
Test: SLEPc Lines: 39 39 100.0 %
Date: 2024-11-21 00:40:22 Functions: 4 4 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :     PETSc mathematics include file. Defines certain basic mathematical
       3             :     constants and functions for working with single, double, and quad precision
       4             :     floating point numbers as well as complex single and double.
       5             : 
       6             :     This file is included by petscsys.h and should not be used directly.
       7             : */
       8             : #pragma once
       9             : 
      10             : #include <math.h>
      11             : #include <petscmacros.h>
      12             : #include <petscsystypes.h>
      13             : 
      14             : /* SUBMANSEC = Sys */
      15             : 
      16             : /*
      17             :    Defines operations that are different for complex and real numbers.
      18             :    All PETSc objects in one program are built around the object
      19             :    PetscScalar which is either always a real or a complex.
      20             : */
      21             : 
      22             : /*
      23             :     Real number definitions
      24             :  */
      25             : #if defined(PETSC_USE_REAL_SINGLE)
      26             :   #define PetscSqrtReal(a)        sqrtf(a)
      27             :   #define PetscCbrtReal(a)        cbrtf(a)
      28             :   #define PetscHypotReal(a, b)    hypotf(a, b)
      29             :   #define PetscAtan2Real(a, b)    atan2f(a, b)
      30             :   #define PetscPowReal(a, b)      powf(a, b)
      31             :   #define PetscExpReal(a)         expf(a)
      32             :   #define PetscLogReal(a)         logf(a)
      33             :   #define PetscLog10Real(a)       log10f(a)
      34             :   #define PetscLog2Real(a)        log2f(a)
      35             :   #define PetscSinReal(a)         sinf(a)
      36             :   #define PetscCosReal(a)         cosf(a)
      37             :   #define PetscTanReal(a)         tanf(a)
      38             :   #define PetscAsinReal(a)        asinf(a)
      39             :   #define PetscAcosReal(a)        acosf(a)
      40             :   #define PetscAtanReal(a)        atanf(a)
      41             :   #define PetscSinhReal(a)        sinhf(a)
      42             :   #define PetscCoshReal(a)        coshf(a)
      43             :   #define PetscTanhReal(a)        tanhf(a)
      44             :   #define PetscAsinhReal(a)       asinhf(a)
      45             :   #define PetscAcoshReal(a)       acoshf(a)
      46             :   #define PetscAtanhReal(a)       atanhf(a)
      47             :   #define PetscErfReal(a)         erff(a)
      48             :   #define PetscCeilReal(a)        ceilf(a)
      49             :   #define PetscFloorReal(a)       floorf(a)
      50             :   #define PetscFmodReal(a, b)     fmodf(a, b)
      51             :   #define PetscCopysignReal(a, b) copysignf(a, b)
      52             :   #define PetscTGamma(a)          tgammaf(a)
      53             :   #if defined(PETSC_HAVE_LGAMMA_IS_GAMMA)
      54             :     #define PetscLGamma(a) gammaf(a)
      55             :   #else
      56             :     #define PetscLGamma(a) lgammaf(a)
      57             :   #endif
      58             : 
      59             : #elif defined(PETSC_USE_REAL_DOUBLE)
      60             :   #define PetscSqrtReal(a)        sqrt(a)
      61             :   #define PetscCbrtReal(a)        cbrt(a)
      62             :   #define PetscHypotReal(a, b)    hypot(a, b)
      63             :   #define PetscAtan2Real(a, b)    atan2(a, b)
      64             :   #define PetscPowReal(a, b)      pow(a, b)
      65             :   #define PetscExpReal(a)         exp(a)
      66             :   #define PetscLogReal(a)         log(a)
      67             :   #define PetscLog10Real(a)       log10(a)
      68             :   #define PetscLog2Real(a)        log2(a)
      69             :   #define PetscSinReal(a)         sin(a)
      70             :   #define PetscCosReal(a)         cos(a)
      71             :   #define PetscTanReal(a)         tan(a)
      72             :   #define PetscAsinReal(a)        asin(a)
      73             :   #define PetscAcosReal(a)        acos(a)
      74             :   #define PetscAtanReal(a)        atan(a)
      75             :   #define PetscSinhReal(a)        sinh(a)
      76             :   #define PetscCoshReal(a)        cosh(a)
      77             :   #define PetscTanhReal(a)        tanh(a)
      78             :   #define PetscAsinhReal(a)       asinh(a)
      79             :   #define PetscAcoshReal(a)       acosh(a)
      80             :   #define PetscAtanhReal(a)       atanh(a)
      81             :   #define PetscErfReal(a)         erf(a)
      82             :   #define PetscCeilReal(a)        ceil(a)
      83             :   #define PetscFloorReal(a)       floor(a)
      84             :   #define PetscFmodReal(a, b)     fmod(a, b)
      85             :   #define PetscCopysignReal(a, b) copysign(a, b)
      86             :   #define PetscTGamma(a)          tgamma(a)
      87             :   #if defined(PETSC_HAVE_LGAMMA_IS_GAMMA)
      88             :     #define PetscLGamma(a) gamma(a)
      89             :   #else
      90             :     #define PetscLGamma(a) lgamma(a)
      91             :   #endif
      92             : 
      93             : #elif defined(PETSC_USE_REAL___FLOAT128)
      94             :   #define PetscSqrtReal(a)        sqrtq(a)
      95             :   #define PetscCbrtReal(a)        cbrtq(a)
      96             :   #define PetscHypotReal(a, b)    hypotq(a, b)
      97             :   #define PetscAtan2Real(a, b)    atan2q(a, b)
      98             :   #define PetscPowReal(a, b)      powq(a, b)
      99             :   #define PetscExpReal(a)         expq(a)
     100             :   #define PetscLogReal(a)         logq(a)
     101             :   #define PetscLog10Real(a)       log10q(a)
     102             :   #define PetscLog2Real(a)        log2q(a)
     103             :   #define PetscSinReal(a)         sinq(a)
     104             :   #define PetscCosReal(a)         cosq(a)
     105             :   #define PetscTanReal(a)         tanq(a)
     106             :   #define PetscAsinReal(a)        asinq(a)
     107             :   #define PetscAcosReal(a)        acosq(a)
     108             :   #define PetscAtanReal(a)        atanq(a)
     109             :   #define PetscSinhReal(a)        sinhq(a)
     110             :   #define PetscCoshReal(a)        coshq(a)
     111             :   #define PetscTanhReal(a)        tanhq(a)
     112             :   #define PetscAsinhReal(a)       asinhq(a)
     113             :   #define PetscAcoshReal(a)       acoshq(a)
     114             :   #define PetscAtanhReal(a)       atanhq(a)
     115             :   #define PetscErfReal(a)         erfq(a)
     116             :   #define PetscCeilReal(a)        ceilq(a)
     117             :   #define PetscFloorReal(a)       floorq(a)
     118             :   #define PetscFmodReal(a, b)     fmodq(a, b)
     119             :   #define PetscCopysignReal(a, b) copysignq(a, b)
     120             :   #define PetscTGamma(a)          tgammaq(a)
     121             :   #if defined(PETSC_HAVE_LGAMMA_IS_GAMMA)
     122             :     #define PetscLGamma(a) gammaq(a)
     123             :   #else
     124             :     #define PetscLGamma(a) lgammaq(a)
     125             :   #endif
     126             : 
     127             : #elif defined(PETSC_USE_REAL___FP16)
     128             :   #define PetscSqrtReal(a)        sqrtf(a)
     129             :   #define PetscCbrtReal(a)        cbrtf(a)
     130             :   #define PetscHypotReal(a, b)    hypotf(a, b)
     131             :   #define PetscAtan2Real(a, b)    atan2f(a, b)
     132             :   #define PetscPowReal(a, b)      powf(a, b)
     133             :   #define PetscExpReal(a)         expf(a)
     134             :   #define PetscLogReal(a)         logf(a)
     135             :   #define PetscLog10Real(a)       log10f(a)
     136             :   #define PetscLog2Real(a)        log2f(a)
     137             :   #define PetscSinReal(a)         sinf(a)
     138             :   #define PetscCosReal(a)         cosf(a)
     139             :   #define PetscTanReal(a)         tanf(a)
     140             :   #define PetscAsinReal(a)        asinf(a)
     141             :   #define PetscAcosReal(a)        acosf(a)
     142             :   #define PetscAtanReal(a)        atanf(a)
     143             :   #define PetscSinhReal(a)        sinhf(a)
     144             :   #define PetscCoshReal(a)        coshf(a)
     145             :   #define PetscTanhReal(a)        tanhf(a)
     146             :   #define PetscAsinhReal(a)       asinhf(a)
     147             :   #define PetscAcoshReal(a)       acoshf(a)
     148             :   #define PetscAtanhReal(a)       atanhf(a)
     149             :   #define PetscErfReal(a)         erff(a)
     150             :   #define PetscCeilReal(a)        ceilf(a)
     151             :   #define PetscFloorReal(a)       floorf(a)
     152             :   #define PetscFmodReal(a, b)     fmodf(a, b)
     153             :   #define PetscCopysignReal(a, b) copysignf(a, b)
     154             :   #define PetscTGamma(a)          tgammaf(a)
     155             :   #if defined(PETSC_HAVE_LGAMMA_IS_GAMMA)
     156             :     #define PetscLGamma(a) gammaf(a)
     157             :   #else
     158             :     #define PetscLGamma(a) lgammaf(a)
     159             :   #endif
     160             : 
     161             : #endif /* PETSC_USE_REAL_* */
     162             : 
     163             : static inline PetscReal PetscSignReal(PetscReal a)
     164             : {
     165             :   return (PetscReal)((a < (PetscReal)0) ? -1 : ((a > (PetscReal)0) ? 1 : 0));
     166             : }
     167             : 
     168             : #if !defined(PETSC_HAVE_LOG2)
     169             :   #undef PetscLog2Real
     170             : static inline PetscReal PetscLog2Real(PetscReal a)
     171             : {
     172             :   return PetscLogReal(a) / PetscLogReal((PetscReal)2);
     173             : }
     174             : #endif
     175             : 
     176             : #if defined(PETSC_HAVE_REAL___FLOAT128) && !defined(PETSC_SKIP_REAL___FLOAT128)
     177             : PETSC_EXTERN MPI_Datatype MPIU___FLOAT128 PETSC_ATTRIBUTE_MPI_TYPE_TAG(__float128);
     178             : #endif
     179             : #if defined(PETSC_HAVE_REAL___FP16) && !defined(PETSC_SKIP_REAL___FP16)
     180             : PETSC_EXTERN MPI_Datatype MPIU___FP16 PETSC_ATTRIBUTE_MPI_TYPE_TAG(__fp16);
     181             : #endif
     182             : 
     183             : /*MC
     184             :    MPIU_REAL - Portable MPI datatype corresponding to `PetscReal` independent of what precision `PetscReal` is in
     185             : 
     186             :    Level: beginner
     187             : 
     188             :    Note:
     189             :    In MPI calls that require an MPI datatype that matches a `PetscReal` or array of `PetscReal` values, pass this value.
     190             : 
     191             : .seealso: `PetscReal`, `PetscScalar`, `PetscComplex`, `PetscInt`, `MPIU_SCALAR`, `MPIU_COMPLEX`, `MPIU_INT`
     192             : M*/
     193             : #if defined(PETSC_USE_REAL_SINGLE)
     194             :   #define MPIU_REAL MPI_FLOAT
     195             : #elif defined(PETSC_USE_REAL_DOUBLE)
     196             :   #define MPIU_REAL MPI_DOUBLE
     197             : #elif defined(PETSC_USE_REAL___FLOAT128)
     198             :   #define MPIU_REAL MPIU___FLOAT128
     199             : #elif defined(PETSC_USE_REAL___FP16)
     200             :   #define MPIU_REAL MPIU___FP16
     201             : #endif /* PETSC_USE_REAL_* */
     202             : 
     203             : /*
     204             :     Complex number definitions
     205             :  */
     206             : #if defined(PETSC_HAVE_COMPLEX)
     207             :   #if defined(__cplusplus) && !defined(PETSC_USE_REAL___FLOAT128)
     208             :   /* C++ support of complex number */
     209             : 
     210             :     #define PetscRealPartComplex(a)      (static_cast<PetscComplex>(a)).real()
     211             :     #define PetscImaginaryPartComplex(a) (static_cast<PetscComplex>(a)).imag()
     212             :     #define PetscAbsComplex(a)           petsccomplexlib::abs(static_cast<PetscComplex>(a))
     213             :     #define PetscArgComplex(a)           petsccomplexlib::arg(static_cast<PetscComplex>(a))
     214             :     #define PetscConjComplex(a)          petsccomplexlib::conj(static_cast<PetscComplex>(a))
     215             :     #define PetscSqrtComplex(a)          petsccomplexlib::sqrt(static_cast<PetscComplex>(a))
     216             :     #define PetscPowComplex(a, b)        petsccomplexlib::pow(static_cast<PetscComplex>(a), static_cast<PetscComplex>(b))
     217             :     #define PetscExpComplex(a)           petsccomplexlib::exp(static_cast<PetscComplex>(a))
     218             :     #define PetscLogComplex(a)           petsccomplexlib::log(static_cast<PetscComplex>(a))
     219             :     #define PetscSinComplex(a)           petsccomplexlib::sin(static_cast<PetscComplex>(a))
     220             :     #define PetscCosComplex(a)           petsccomplexlib::cos(static_cast<PetscComplex>(a))
     221             :     #define PetscTanComplex(a)           petsccomplexlib::tan(static_cast<PetscComplex>(a))
     222             :     #define PetscAsinComplex(a)          petsccomplexlib::asin(static_cast<PetscComplex>(a))
     223             :     #define PetscAcosComplex(a)          petsccomplexlib::acos(static_cast<PetscComplex>(a))
     224             :     #define PetscAtanComplex(a)          petsccomplexlib::atan(static_cast<PetscComplex>(a))
     225             :     #define PetscSinhComplex(a)          petsccomplexlib::sinh(static_cast<PetscComplex>(a))
     226             :     #define PetscCoshComplex(a)          petsccomplexlib::cosh(static_cast<PetscComplex>(a))
     227             :     #define PetscTanhComplex(a)          petsccomplexlib::tanh(static_cast<PetscComplex>(a))
     228             :     #define PetscAsinhComplex(a)         petsccomplexlib::asinh(static_cast<PetscComplex>(a))
     229             :     #define PetscAcoshComplex(a)         petsccomplexlib::acosh(static_cast<PetscComplex>(a))
     230             :     #define PetscAtanhComplex(a)         petsccomplexlib::atanh(static_cast<PetscComplex>(a))
     231             : 
     232             :   /* TODO: Add configure tests
     233             : 
     234             : #if !defined(PETSC_HAVE_CXX_TAN_COMPLEX)
     235             : #undef PetscTanComplex
     236             : static inline PetscComplex PetscTanComplex(PetscComplex z)
     237             : {
     238             :   return PetscSinComplex(z)/PetscCosComplex(z);
     239             : }
     240             : #endif
     241             : 
     242             : #if !defined(PETSC_HAVE_CXX_TANH_COMPLEX)
     243             : #undef PetscTanhComplex
     244             : static inline PetscComplex PetscTanhComplex(PetscComplex z)
     245             : {
     246             :   return PetscSinhComplex(z)/PetscCoshComplex(z);
     247             : }
     248             : #endif
     249             : 
     250             : #if !defined(PETSC_HAVE_CXX_ASIN_COMPLEX)
     251             : #undef PetscAsinComplex
     252             : static inline PetscComplex PetscAsinComplex(PetscComplex z)
     253             : {
     254             :   const PetscComplex j(0,1);
     255             :   return -j*PetscLogComplex(j*z+PetscSqrtComplex(1.0f-z*z));
     256             : }
     257             : #endif
     258             : 
     259             : #if !defined(PETSC_HAVE_CXX_ACOS_COMPLEX)
     260             : #undef PetscAcosComplex
     261             : static inline PetscComplex PetscAcosComplex(PetscComplex z)
     262             : {
     263             :   const PetscComplex j(0,1);
     264             :   return j*PetscLogComplex(z-j*PetscSqrtComplex(1.0f-z*z));
     265             : }
     266             : #endif
     267             : 
     268             : #if !defined(PETSC_HAVE_CXX_ATAN_COMPLEX)
     269             : #undef PetscAtanComplex
     270             : static inline PetscComplex PetscAtanComplex(PetscComplex z)
     271             : {
     272             :   const PetscComplex j(0,1);
     273             :   return 0.5f*j*PetscLogComplex((1.0f-j*z)/(1.0f+j*z));
     274             : }
     275             : #endif
     276             : 
     277             : #if !defined(PETSC_HAVE_CXX_ASINH_COMPLEX)
     278             : #undef PetscAsinhComplex
     279             : static inline PetscComplex PetscAsinhComplex(PetscComplex z)
     280             : {
     281             :   return PetscLogComplex(z+PetscSqrtComplex(z*z+1.0f));
     282             : }
     283             : #endif
     284             : 
     285             : #if !defined(PETSC_HAVE_CXX_ACOSH_COMPLEX)
     286             : #undef PetscAcoshComplex
     287             : static inline PetscComplex PetscAcoshComplex(PetscComplex z)
     288             : {
     289             :   return PetscLogComplex(z+PetscSqrtComplex(z*z-1.0f));
     290             : }
     291             : #endif
     292             : 
     293             : #if !defined(PETSC_HAVE_CXX_ATANH_COMPLEX)
     294             : #undef PetscAtanhComplex
     295             : static inline PetscComplex PetscAtanhComplex(PetscComplex z)
     296             : {
     297             :   return 0.5f*PetscLogComplex((1.0f+z)/(1.0f-z));
     298             : }
     299             : #endif
     300             : 
     301             : */
     302             : 
     303             :   #else /* C99 support of complex number */
     304             : 
     305             :     #if defined(PETSC_USE_REAL_SINGLE)
     306             :       #define PetscRealPartComplex(a)      crealf(a)
     307             :       #define PetscImaginaryPartComplex(a) cimagf(a)
     308             :       #define PetscAbsComplex(a)           cabsf(a)
     309             :       #define PetscArgComplex(a)           cargf(a)
     310             :       #define PetscConjComplex(a)          conjf(a)
     311             :       #define PetscSqrtComplex(a)          csqrtf(a)
     312             :       #define PetscPowComplex(a, b)        cpowf(a, b)
     313             :       #define PetscExpComplex(a)           cexpf(a)
     314             :       #define PetscLogComplex(a)           clogf(a)
     315             :       #define PetscSinComplex(a)           csinf(a)
     316             :       #define PetscCosComplex(a)           ccosf(a)
     317             :       #define PetscTanComplex(a)           ctanf(a)
     318             :       #define PetscAsinComplex(a)          casinf(a)
     319             :       #define PetscAcosComplex(a)          cacosf(a)
     320             :       #define PetscAtanComplex(a)          catanf(a)
     321             :       #define PetscSinhComplex(a)          csinhf(a)
     322             :       #define PetscCoshComplex(a)          ccoshf(a)
     323             :       #define PetscTanhComplex(a)          ctanhf(a)
     324             :       #define PetscAsinhComplex(a)         casinhf(a)
     325             :       #define PetscAcoshComplex(a)         cacoshf(a)
     326             :       #define PetscAtanhComplex(a)         catanhf(a)
     327             : 
     328             :     #elif defined(PETSC_USE_REAL_DOUBLE)
     329             :       #define PetscRealPartComplex(a)      creal(a)
     330             :       #define PetscImaginaryPartComplex(a) cimag(a)
     331             :       #define PetscAbsComplex(a)           cabs(a)
     332             :       #define PetscArgComplex(a)           carg(a)
     333             :       #define PetscConjComplex(a)          conj(a)
     334             :       #define PetscSqrtComplex(a)          csqrt(a)
     335             :       #define PetscPowComplex(a, b)        cpow(a, b)
     336             :       #define PetscExpComplex(a)           cexp(a)
     337             :       #define PetscLogComplex(a)           clog(a)
     338             :       #define PetscSinComplex(a)           csin(a)
     339             :       #define PetscCosComplex(a)           ccos(a)
     340             :       #define PetscTanComplex(a)           ctan(a)
     341             :       #define PetscAsinComplex(a)          casin(a)
     342             :       #define PetscAcosComplex(a)          cacos(a)
     343             :       #define PetscAtanComplex(a)          catan(a)
     344             :       #define PetscSinhComplex(a)          csinh(a)
     345             :       #define PetscCoshComplex(a)          ccosh(a)
     346             :       #define PetscTanhComplex(a)          ctanh(a)
     347             :       #define PetscAsinhComplex(a)         casinh(a)
     348             :       #define PetscAcoshComplex(a)         cacosh(a)
     349             :       #define PetscAtanhComplex(a)         catanh(a)
     350             : 
     351             :     #elif defined(PETSC_USE_REAL___FLOAT128)
     352             :       #define PetscRealPartComplex(a)      crealq(a)
     353             :       #define PetscImaginaryPartComplex(a) cimagq(a)
     354             :       #define PetscAbsComplex(a)           cabsq(a)
     355             :       #define PetscArgComplex(a)           cargq(a)
     356             :       #define PetscConjComplex(a)          conjq(a)
     357             :       #define PetscSqrtComplex(a)          csqrtq(a)
     358             :       #define PetscPowComplex(a, b)        cpowq(a, b)
     359             :       #define PetscExpComplex(a)           cexpq(a)
     360             :       #define PetscLogComplex(a)           clogq(a)
     361             :       #define PetscSinComplex(a)           csinq(a)
     362             :       #define PetscCosComplex(a)           ccosq(a)
     363             :       #define PetscTanComplex(a)           ctanq(a)
     364             :       #define PetscAsinComplex(a)          casinq(a)
     365             :       #define PetscAcosComplex(a)          cacosq(a)
     366             :       #define PetscAtanComplex(a)          catanq(a)
     367             :       #define PetscSinhComplex(a)          csinhq(a)
     368             :       #define PetscCoshComplex(a)          ccoshq(a)
     369             :       #define PetscTanhComplex(a)          ctanhq(a)
     370             :       #define PetscAsinhComplex(a)         casinhq(a)
     371             :       #define PetscAcoshComplex(a)         cacoshq(a)
     372             :       #define PetscAtanhComplex(a)         catanhq(a)
     373             : 
     374             :     #endif /* PETSC_USE_REAL_* */
     375             :   #endif   /* (__cplusplus) */
     376             : 
     377             : /*MC
     378             :    PETSC_i - the pure imaginary complex number i
     379             : 
     380             :    Level: intermediate
     381             : 
     382             : .seealso: `PetscComplex`, `PetscScalar`
     383             : M*/
     384             : PETSC_EXTERN PetscComplex PETSC_i;
     385             : 
     386             : /*
     387             :    Try to do the right thing for complex number construction: see
     388             :    http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1464.htm
     389             :    for details
     390             : */
     391       98360 : static inline PetscComplex PetscCMPLX(PetscReal x, PetscReal y)
     392             : {
     393             :   #if defined(__cplusplus) && !defined(PETSC_USE_REAL___FLOAT128)
     394             :   return PetscComplex(x, y);
     395             :   #elif defined(_Imaginary_I)
     396             :   return x + y * _Imaginary_I;
     397             :   #else
     398             :   { /* In both C99 and C11 (ISO/IEC 9899, Section 6.2.5),
     399             : 
     400             :        "For each floating type there is a corresponding real type, which is always a real floating
     401             :        type. For real floating types, it is the same type. For complex types, it is the type given
     402             :        by deleting the keyword _Complex from the type name."
     403             : 
     404             :        So type punning should be portable. */
     405       98360 :     union
     406             :     {
     407             :       PetscComplex z;
     408             :       PetscReal    f[2];
     409             :     } uz;
     410             : 
     411       98360 :     uz.f[0] = x;
     412       98360 :     uz.f[1] = y;
     413       98360 :     return uz.z;
     414             :   }
     415             :   #endif
     416             : }
     417             : 
     418             :   #define MPIU_C_COMPLEX        MPI_C_COMPLEX PETSC_DEPRECATED_MACRO(3, 15, 0, "MPI_C_COMPLEX", )
     419             :   #define MPIU_C_DOUBLE_COMPLEX MPI_C_DOUBLE_COMPLEX PETSC_DEPRECATED_MACRO(3, 15, 0, "MPI_C_DOUBLE_COMPLEX", )
     420             : 
     421             :   #if defined(PETSC_HAVE_REAL___FLOAT128) && !defined(PETSC_SKIP_REAL___FLOAT128)
     422             :     // if complex is not used, then quadmath.h won't be included by petscsystypes.h
     423             :     #if defined(PETSC_USE_COMPLEX)
     424             :       #define MPIU___COMPLEX128_ATTR_TAG PETSC_ATTRIBUTE_MPI_TYPE_TAG(__complex128)
     425             :     #else
     426             :       #define MPIU___COMPLEX128_ATTR_TAG
     427             :     #endif
     428             : 
     429             : PETSC_EXTERN MPI_Datatype MPIU___COMPLEX128 MPIU___COMPLEX128_ATTR_TAG;
     430             : 
     431             :     #undef MPIU___COMPLEX128_ATTR_TAG
     432             :   #endif /* PETSC_HAVE_REAL___FLOAT128 */
     433             : 
     434             :   /*MC
     435             :    MPIU_COMPLEX - Portable MPI datatype corresponding to `PetscComplex` independent of the precision of `PetscComplex`
     436             : 
     437             :    Level: beginner
     438             : 
     439             :    Note:
     440             :    In MPI calls that require an MPI datatype that matches a `PetscComplex` or array of `PetscComplex` values, pass this value.
     441             : 
     442             : .seealso: `PetscReal`, `PetscScalar`, `PetscComplex`, `PetscInt`, `MPIU_REAL`, `MPIU_SCALAR`, `MPIU_COMPLEX`, `MPIU_INT`, `PETSC_i`
     443             : M*/
     444             :   #if defined(PETSC_USE_REAL_SINGLE)
     445             :     #define MPIU_COMPLEX MPI_C_COMPLEX
     446             :   #elif defined(PETSC_USE_REAL_DOUBLE)
     447             :     #define MPIU_COMPLEX MPI_C_DOUBLE_COMPLEX
     448             :   #elif defined(PETSC_USE_REAL___FLOAT128)
     449             :     #define MPIU_COMPLEX MPIU___COMPLEX128
     450             :   #elif defined(PETSC_USE_REAL___FP16)
     451             :     #define MPIU_COMPLEX MPI_C_COMPLEX
     452             :   #endif /* PETSC_USE_REAL_* */
     453             : 
     454             : #endif /* PETSC_HAVE_COMPLEX */
     455             : 
     456             : /*
     457             :     Scalar number definitions
     458             :  */
     459             : #if defined(PETSC_USE_COMPLEX) && defined(PETSC_HAVE_COMPLEX)
     460             :   /*MC
     461             :    MPIU_SCALAR - Portable MPI datatype corresponding to `PetscScalar` independent of the precision of `PetscScalar`
     462             : 
     463             :    Level: beginner
     464             : 
     465             :    Note:
     466             :    In MPI calls that require an MPI datatype that matches a `PetscScalar` or array of `PetscScalar` values, pass this value.
     467             : 
     468             : .seealso: `PetscReal`, `PetscScalar`, `PetscComplex`, `PetscInt`, `MPIU_REAL`, `MPIU_COMPLEX`, `MPIU_INT`
     469             : M*/
     470             :   #define MPIU_SCALAR MPIU_COMPLEX
     471             : 
     472             :   /*MC
     473             :    PetscRealPart - Returns the real part of a `PetscScalar`
     474             : 
     475             :    Synopsis:
     476             :    #include <petscmath.h>
     477             :    PetscReal PetscRealPart(PetscScalar v)
     478             : 
     479             :    Not Collective
     480             : 
     481             :    Input Parameter:
     482             : .  v - value to find the real part of
     483             : 
     484             :    Level: beginner
     485             : 
     486             : .seealso: `PetscScalar`, `PetscImaginaryPart()`, `PetscMax()`, `PetscClipInterval()`, `PetscAbsInt()`, `PetscAbsReal()`, `PetscSqr()`
     487             : M*/
     488             :   #define PetscRealPart(a) PetscRealPartComplex(a)
     489             : 
     490             :   /*MC
     491             :    PetscImaginaryPart - Returns the imaginary part of a `PetscScalar`
     492             : 
     493             :    Synopsis:
     494             :    #include <petscmath.h>
     495             :    PetscReal PetscImaginaryPart(PetscScalar v)
     496             : 
     497             :    Not Collective
     498             : 
     499             :    Input Parameter:
     500             : .  v - value to find the imaginary part of
     501             : 
     502             :    Level: beginner
     503             : 
     504             :    Note:
     505             :    If PETSc was configured for real numbers then this always returns the value 0
     506             : 
     507             : .seealso: `PetscScalar`, `PetscRealPart()`, `PetscMax()`, `PetscClipInterval()`, `PetscAbsInt()`, `PetscAbsReal()`, `PetscSqr()`
     508             : M*/
     509             :   #define PetscImaginaryPart(a) PetscImaginaryPartComplex(a)
     510             : 
     511             :   #define PetscAbsScalar(a)    PetscAbsComplex(a)
     512             :   #define PetscArgScalar(a)    PetscArgComplex(a)
     513             :   #define PetscConj(a)         PetscConjComplex(a)
     514             :   #define PetscSqrtScalar(a)   PetscSqrtComplex(a)
     515             :   #define PetscPowScalar(a, b) PetscPowComplex(a, b)
     516             :   #define PetscExpScalar(a)    PetscExpComplex(a)
     517             :   #define PetscLogScalar(a)    PetscLogComplex(a)
     518             :   #define PetscSinScalar(a)    PetscSinComplex(a)
     519             :   #define PetscCosScalar(a)    PetscCosComplex(a)
     520             :   #define PetscTanScalar(a)    PetscTanComplex(a)
     521             :   #define PetscAsinScalar(a)   PetscAsinComplex(a)
     522             :   #define PetscAcosScalar(a)   PetscAcosComplex(a)
     523             :   #define PetscAtanScalar(a)   PetscAtanComplex(a)
     524             :   #define PetscSinhScalar(a)   PetscSinhComplex(a)
     525             :   #define PetscCoshScalar(a)   PetscCoshComplex(a)
     526             :   #define PetscTanhScalar(a)   PetscTanhComplex(a)
     527             :   #define PetscAsinhScalar(a)  PetscAsinhComplex(a)
     528             :   #define PetscAcoshScalar(a)  PetscAcoshComplex(a)
     529             :   #define PetscAtanhScalar(a)  PetscAtanhComplex(a)
     530             : 
     531             : #else /* PETSC_USE_COMPLEX */
     532             :   #define MPIU_SCALAR           MPIU_REAL
     533             :   #define PetscRealPart(a)      (a)
     534             :   #define PetscImaginaryPart(a) ((PetscReal)0)
     535             :   #define PetscAbsScalar(a)     PetscAbsReal(a)
     536             :   #define PetscArgScalar(a)     (((a) < (PetscReal)0) ? PETSC_PI : (PetscReal)0)
     537             :   #define PetscConj(a)          (a)
     538             :   #define PetscSqrtScalar(a)    PetscSqrtReal(a)
     539             :   #define PetscPowScalar(a, b)  PetscPowReal(a, b)
     540             :   #define PetscExpScalar(a)     PetscExpReal(a)
     541             :   #define PetscLogScalar(a)     PetscLogReal(a)
     542             :   #define PetscSinScalar(a)     PetscSinReal(a)
     543             :   #define PetscCosScalar(a)     PetscCosReal(a)
     544             :   #define PetscTanScalar(a)     PetscTanReal(a)
     545             :   #define PetscAsinScalar(a)    PetscAsinReal(a)
     546             :   #define PetscAcosScalar(a)    PetscAcosReal(a)
     547             :   #define PetscAtanScalar(a)    PetscAtanReal(a)
     548             :   #define PetscSinhScalar(a)    PetscSinhReal(a)
     549             :   #define PetscCoshScalar(a)    PetscCoshReal(a)
     550             :   #define PetscTanhScalar(a)    PetscTanhReal(a)
     551             :   #define PetscAsinhScalar(a)   PetscAsinhReal(a)
     552             :   #define PetscAcoshScalar(a)   PetscAcoshReal(a)
     553             :   #define PetscAtanhScalar(a)   PetscAtanhReal(a)
     554             : 
     555             : #endif /* PETSC_USE_COMPLEX */
     556             : 
     557             : /*
     558             :    Certain objects may be created using either single or double precision.
     559             :    This is currently not used.
     560             : */
     561             : typedef enum {
     562             :   PETSC_SCALAR_DOUBLE,
     563             :   PETSC_SCALAR_SINGLE,
     564             :   PETSC_SCALAR_LONG_DOUBLE,
     565             :   PETSC_SCALAR_HALF
     566             : } PetscScalarPrecision;
     567             : 
     568             : /*MC
     569             :    PetscAbs - Returns the absolute value of a number
     570             : 
     571             :    Synopsis:
     572             :    #include <petscmath.h>
     573             :    type PetscAbs(type v)
     574             : 
     575             :    Not Collective
     576             : 
     577             :    Input Parameter:
     578             : .  v - the number
     579             : 
     580             :    Level: beginner
     581             : 
     582             :    Note:
     583             :    The type can be integer or real floating point value, but cannot be complex
     584             : 
     585             : .seealso: `PetscAbsInt()`, `PetscAbsReal()`, `PetscAbsScalar()`, `PetscSign()`
     586             : M*/
     587             : #define PetscAbs(a) (((a) >= 0) ? (a) : (-(a)))
     588             : 
     589             : /*MC
     590             :    PetscSign - Returns the sign of a number as an integer of value -1, 0, or 1
     591             : 
     592             :    Synopsis:
     593             :    #include <petscmath.h>
     594             :    int PetscSign(type v)
     595             : 
     596             :    Not Collective
     597             : 
     598             :    Input Parameter:
     599             : .  v - the number
     600             : 
     601             :    Level: beginner
     602             : 
     603             :    Note:
     604             :    The type can be integer or real floating point value
     605             : 
     606             : .seealso: `PetscAbsInt()`, `PetscAbsReal()`, `PetscAbsScalar()`
     607             : M*/
     608             : #define PetscSign(a) (((a) >= 0) ? ((a) == 0 ? 0 : 1) : -1)
     609             : 
     610             : /*MC
     611             :    PetscMin - Returns minimum of two numbers
     612             : 
     613             :    Synopsis:
     614             :    #include <petscmath.h>
     615             :    type PetscMin(type v1,type v2)
     616             : 
     617             :    Not Collective
     618             : 
     619             :    Input Parameters:
     620             : +  v1 - first value to find minimum of
     621             : -  v2 - second value to find minimum of
     622             : 
     623             :    Level: beginner
     624             : 
     625             :    Note:
     626             :    The type can be integer or floating point value, but cannot be complex
     627             : 
     628             : .seealso: `PetscMax()`, `PetscClipInterval()`, `PetscAbsInt()`, `PetscAbsReal()`, `PetscSqr()`
     629             : M*/
     630             : #define PetscMin(a, b) (((a) < (b)) ? (a) : (b))
     631             : 
     632             : /*MC
     633             :    PetscMax - Returns maximum of two numbers
     634             : 
     635             :    Synopsis:
     636             :    #include <petscmath.h>
     637             :    type max PetscMax(type v1,type v2)
     638             : 
     639             :    Not Collective
     640             : 
     641             :    Input Parameters:
     642             : +  v1 - first value to find maximum of
     643             : -  v2 - second value to find maximum of
     644             : 
     645             :    Level: beginner
     646             : 
     647             :    Note:
     648             :    The type can be integer or floating point value
     649             : 
     650             : .seealso: `PetscMin()`, `PetscClipInterval()`, `PetscAbsInt()`, `PetscAbsReal()`, `PetscSqr()`
     651             : M*/
     652             : #define PetscMax(a, b) (((a) < (b)) ? (b) : (a))
     653             : 
     654             : /*MC
     655             :    PetscClipInterval - Returns a number clipped to be within an interval
     656             : 
     657             :    Synopsis:
     658             :    #include <petscmath.h>
     659             :    type clip PetscClipInterval(type x,type a,type b)
     660             : 
     661             :    Not Collective
     662             : 
     663             :    Input Parameters:
     664             : +  x - value to use if within interval [a,b]
     665             : .  a - lower end of interval
     666             : -  b - upper end of interval
     667             : 
     668             :    Level: beginner
     669             : 
     670             :    Note:
     671             :    The type can be integer or floating point value
     672             : 
     673             :    Example\:
     674             : .vb
     675             :   PetscInt c = PetscClipInterval(5, 2, 3); // the value of c is 3
     676             :   PetscInt c = PetscClipInterval(5, 2, 6); // the value of c is 5
     677             : .ve
     678             : 
     679             : .seealso: `PetscMin()`, `PetscMax()`, `PetscAbsInt()`, `PetscAbsReal()`, `PetscSqr()`
     680             : M*/
     681             : #define PetscClipInterval(x, a, b) (PetscMax((a), PetscMin((x), (b))))
     682             : 
     683             : /*MC
     684             :    PetscAbsInt - Returns the absolute value of an integer
     685             : 
     686             :    Synopsis:
     687             :    #include <petscmath.h>
     688             :    int abs PetscAbsInt(int v1)
     689             : 
     690             :    Input Parameter:
     691             : .   v1 - the integer
     692             : 
     693             :    Level: beginner
     694             : 
     695             : .seealso: `PetscMax()`, `PetscMin()`, `PetscAbsReal()`, `PetscSqr()`
     696             : M*/
     697             : #define PetscAbsInt(a) (((a) < 0) ? (-(a)) : (a))
     698             : 
     699             : /*MC
     700             :    PetscAbsReal - Returns the absolute value of a real number
     701             : 
     702             :    Synopsis:
     703             :    #include <petscmath.h>
     704             :    Real abs PetscAbsReal(PetscReal v1)
     705             : 
     706             :    Input Parameter:
     707             : .   v1 - the `PetscReal` value
     708             : 
     709             :    Level: beginner
     710             : 
     711             : .seealso: `PetscReal`, `PetscMax()`, `PetscMin()`, `PetscAbsInt()`, `PetscSqr()`
     712             : M*/
     713             : #if defined(PETSC_USE_REAL_SINGLE)
     714             :   #define PetscAbsReal(a) fabsf(a)
     715             : #elif defined(PETSC_USE_REAL_DOUBLE)
     716             :   #define PetscAbsReal(a) fabs(a)
     717             : #elif defined(PETSC_USE_REAL___FLOAT128)
     718             :   #define PetscAbsReal(a) fabsq(a)
     719             : #elif defined(PETSC_USE_REAL___FP16)
     720             :   #define PetscAbsReal(a) fabsf(a)
     721             : #endif
     722             : 
     723             : /*MC
     724             :    PetscSqr - Returns the square of a number
     725             : 
     726             :    Synopsis:
     727             :    #include <petscmath.h>
     728             :    type sqr PetscSqr(type v1)
     729             : 
     730             :    Not Collective
     731             : 
     732             :    Input Parameter:
     733             : .   v1 - the value
     734             : 
     735             :    Level: beginner
     736             : 
     737             :    Note:
     738             :    The type can be integer, floating point, or complex floating point
     739             : 
     740             : .seealso: `PetscMax()`, `PetscMin()`, `PetscAbsInt()`, `PetscAbsReal()`
     741             : M*/
     742             : #define PetscSqr(a) ((a) * (a))
     743             : 
     744             : /*MC
     745             :    PetscRealConstant - a compile time macro that ensures a given constant real number is properly represented in the configured
     746             :    precision of `PetscReal` be it half, single, double or 128-bit representation
     747             : 
     748             :    Synopsis:
     749             :    #include <petscmath.h>
     750             :    PetscReal PetscRealConstant(real_number)
     751             : 
     752             :    Not Collective
     753             : 
     754             :    Input Parameter:
     755             : .   v1 - the real number, for example 1.5
     756             : 
     757             :    Level: beginner
     758             : 
     759             :    Note:
     760             :    For example, if PETSc is configured with `--with-precision=__float128` and one writes
     761             : .vb
     762             :    PetscReal d = 1.5;
     763             : .ve
     764             :    the result is 1.5 in double precision extended to 128 bit representation, meaning it is very far from the correct value. Hence, one should write
     765             : .vb
     766             :    PetscReal d = PetscRealConstant(1.5);
     767             : .ve
     768             : 
     769             : .seealso: `PetscReal`
     770             : M*/
     771             : #if defined(PETSC_USE_REAL_SINGLE)
     772             :   #define PetscRealConstant(constant) constant##F
     773             : #elif defined(PETSC_USE_REAL_DOUBLE)
     774             :   #define PetscRealConstant(constant) constant
     775             : #elif defined(PETSC_USE_REAL___FLOAT128)
     776             :   #define PetscRealConstant(constant) constant##Q
     777             : #elif defined(PETSC_USE_REAL___FP16)
     778             :   #define PetscRealConstant(constant) constant##F
     779             : #endif
     780             : 
     781             : /*
     782             :      Basic constants
     783             : */
     784             : /*MC
     785             :   PETSC_PI - the value of $ \pi$ to the correct precision of `PetscReal`.
     786             : 
     787             :   Level: beginner
     788             : 
     789             : .seealso: `PetscReal`, `PETSC_PHI`, `PETSC_SQRT2`
     790             : M*/
     791             : 
     792             : /*MC
     793             :   PETSC_PHI - the value of $ \phi$, the Golden Ratio, to the correct precision of `PetscReal`.
     794             : 
     795             :   Level: beginner
     796             : 
     797             : .seealso: `PetscReal`, `PETSC_PI`, `PETSC_SQRT2`
     798             : M*/
     799             : 
     800             : /*MC
     801             :   PETSC_SQRT2 - the value of $ \sqrt{2} $ to the correct precision of `PetscReal`.
     802             : 
     803             :   Level: beginner
     804             : 
     805             : .seealso: `PetscReal`, `PETSC_PI`, `PETSC_PHI`
     806             : M*/
     807             : 
     808             : #define PETSC_PI    PetscRealConstant(3.1415926535897932384626433832795029)
     809             : #define PETSC_PHI   PetscRealConstant(1.6180339887498948482045868343656381)
     810             : #define PETSC_SQRT2 PetscRealConstant(1.4142135623730950488016887242096981)
     811             : 
     812             : /*MC
     813             :   PETSC_MAX_REAL - the largest real value that can be stored in a `PetscReal`
     814             : 
     815             :   Level: beginner
     816             : 
     817             : .seealso: `PETSC_MIN_REAL`, `PETSC_REAL_MIN`, `PETSC_MACHINE_EPSILON`, `PETSC_SQRT_MACHINE_EPSILON`, `PETSC_SMALL`
     818             : M*/
     819             : 
     820             : /*MC
     821             :   PETSC_MIN_REAL - the smallest real value that can be stored in a `PetscReal`, generally this is - `PETSC_MAX_REAL`
     822             : 
     823             :   Level: beginner
     824             : 
     825             : .seealso `PETSC_MAX_REAL`, `PETSC_REAL_MIN`, `PETSC_MACHINE_EPSILON`, `PETSC_SQRT_MACHINE_EPSILON`, `PETSC_SMALL`
     826             : M*/
     827             : 
     828             : /*MC
     829             :   PETSC_REAL_MIN - the smallest positive normalized real value that can be stored in a `PetscReal`.
     830             : 
     831             :   Level: beginner
     832             : 
     833             :   Note:
     834             :   See <https://en.wikipedia.org/wiki/Subnormal_number> for a discussion of normalized and subnormal floating point numbers
     835             : 
     836             :   Developer Note:
     837             :   The naming is confusing as there is both a `PETSC_REAL_MIN` and `PETSC_MIN_REAL` with different meanings.
     838             : 
     839             : .seealso `PETSC_MAX_REAL`, `PETSC_MIN_REAL`, `PETSC_MACHINE_EPSILON`, `PETSC_SQRT_MACHINE_EPSILON`, `PETSC_SMALL`
     840             : M*/
     841             : 
     842             : /*MC
     843             :   PETSC_MACHINE_EPSILON - the machine epsilon for the precision of `PetscReal`
     844             : 
     845             :   Level: beginner
     846             : 
     847             :   Note:
     848             :   See <https://en.wikipedia.org/wiki/Machine_epsilon>
     849             : 
     850             : .seealso `PETSC_MAX_REAL`, `PETSC_MIN_REAL`, `PETSC_REAL_MIN`, `PETSC_SQRT_MACHINE_EPSILON`, `PETSC_SMALL`
     851             : M*/
     852             : 
     853             : /*MC
     854             :   PETSC_SQRT_MACHINE_EPSILON - the square root of the machine epsilon for the precision of `PetscReal`
     855             : 
     856             :   Level: beginner
     857             : 
     858             :   Note:
     859             :   See `PETSC_MACHINE_EPSILON`
     860             : 
     861             : .seealso `PETSC_MAX_REAL`, `PETSC_MIN_REAL`, `PETSC_REAL_MIN`, `PETSC_MACHINE_EPSILON`, `PETSC_SMALL`
     862             : M*/
     863             : 
     864             : /*MC
     865             :   PETSC_SMALL - an arbitrary "small" number which depends on the precision of `PetscReal` used in some PETSc examples
     866             :   and in `PetscApproximateLTE()` and `PetscApproximateGTE()` to determine if a computation was successful.
     867             : 
     868             :   Level: beginner
     869             : 
     870             :   Note:
     871             :   See `PETSC_MACHINE_EPSILON`
     872             : 
     873             : .seealso `PetscApproximateLTE()`, `PetscApproximateGTE()`, `PETSC_MAX_REAL`, `PETSC_MIN_REAL`, `PETSC_REAL_MIN`, `PETSC_MACHINE_EPSILON`,
     874             :          `PETSC_SQRT_MACHINE_EPSILON`
     875             : M*/
     876             : 
     877             : #if defined(PETSC_USE_REAL_SINGLE)
     878             :   #define PETSC_MAX_REAL             3.40282346638528860e+38F
     879             :   #define PETSC_MIN_REAL             (-PETSC_MAX_REAL)
     880             :   #define PETSC_REAL_MIN             1.1754944e-38F
     881             :   #define PETSC_MACHINE_EPSILON      1.19209290e-07F
     882             :   #define PETSC_SQRT_MACHINE_EPSILON 3.45266983e-04F
     883             :   #define PETSC_SMALL                1.e-5F
     884             : #elif defined(PETSC_USE_REAL_DOUBLE)
     885             :   #define PETSC_MAX_REAL             1.7976931348623157e+308
     886             :   #define PETSC_MIN_REAL             (-PETSC_MAX_REAL)
     887             :   #define PETSC_REAL_MIN             2.225073858507201e-308
     888             :   #define PETSC_MACHINE_EPSILON      2.2204460492503131e-16
     889             :   #define PETSC_SQRT_MACHINE_EPSILON 1.490116119384766e-08
     890             :   #define PETSC_SMALL                1.e-10
     891             : #elif defined(PETSC_USE_REAL___FLOAT128)
     892             :   #define PETSC_MAX_REAL             FLT128_MAX
     893             :   #define PETSC_MIN_REAL             (-FLT128_MAX)
     894             :   #define PETSC_REAL_MIN             FLT128_MIN
     895             :   #define PETSC_MACHINE_EPSILON      FLT128_EPSILON
     896             :   #define PETSC_SQRT_MACHINE_EPSILON 1.38777878078144567552953958511352539e-17Q
     897             :   #define PETSC_SMALL                1.e-20Q
     898             : #elif defined(PETSC_USE_REAL___FP16)
     899             :   #define PETSC_MAX_REAL             65504.0F
     900             :   #define PETSC_MIN_REAL             (-PETSC_MAX_REAL)
     901             :   #define PETSC_REAL_MIN             .00006103515625F
     902             :   #define PETSC_MACHINE_EPSILON      .0009765625F
     903             :   #define PETSC_SQRT_MACHINE_EPSILON .03125F
     904             :   #define PETSC_SMALL                5.e-3F
     905             : #endif
     906             : 
     907             : /*MC
     908             :   PETSC_INFINITY - a finite number that represents infinity for setting certain bounds in `Tao`
     909             : 
     910             :   Level: intermediate
     911             : 
     912             :   Note:
     913             :   This is not the IEEE infinity value
     914             : 
     915             : .seealso: `PETSC_NINFINITY`, `SNESVIGetVariableBounds()`, `SNESVISetComputeVariableBounds()`, `SNESVISetVariableBounds()`
     916             : M*/
     917             : #define PETSC_INFINITY (PETSC_MAX_REAL / 4)
     918             : 
     919             : /*MC
     920             :   PETSC_NINFINITY - a finite number that represents negative infinity for setting certain bounds in `Tao`
     921             : 
     922             :   Level: intermediate
     923             : 
     924             :   Note:
     925             :   This is not the negative IEEE infinity value
     926             : 
     927             : .seealso: `PETSC_INFINITY`, `SNESVIGetVariableBounds()`, `SNESVISetComputeVariableBounds()`, `SNESVISetVariableBounds()`
     928             : M*/
     929             : #define PETSC_NINFINITY (-PETSC_INFINITY)
     930             : 
     931             : PETSC_EXTERN PetscBool  PetscIsInfReal(PetscReal);
     932             : PETSC_EXTERN PetscBool  PetscIsNanReal(PetscReal);
     933             : PETSC_EXTERN PetscBool  PetscIsNormalReal(PetscReal);
     934           9 : static inline PetscBool PetscIsInfOrNanReal(PetscReal v)
     935             : {
     936           9 :   return PetscIsInfReal(v) || PetscIsNanReal(v) ? PETSC_TRUE : PETSC_FALSE;
     937             : }
     938             : static inline PetscBool PetscIsInfScalar(PetscScalar v)
     939             : {
     940             :   return PetscIsInfReal(PetscAbsScalar(v));
     941             : }
     942     1556459 : static inline PetscBool PetscIsNanScalar(PetscScalar v)
     943             : {
     944     1556459 :   return PetscIsNanReal(PetscAbsScalar(v));
     945             : }
     946             : static inline PetscBool PetscIsInfOrNanScalar(PetscScalar v)
     947             : {
     948             :   return PetscIsInfOrNanReal(PetscAbsScalar(v));
     949             : }
     950             : static inline PetscBool PetscIsNormalScalar(PetscScalar v)
     951             : {
     952             :   return PetscIsNormalReal(PetscAbsScalar(v));
     953             : }
     954             : 
     955             : PETSC_EXTERN PetscBool PetscIsCloseAtTol(PetscReal, PetscReal, PetscReal, PetscReal);
     956             : PETSC_EXTERN PetscBool PetscEqualReal(PetscReal, PetscReal);
     957             : PETSC_EXTERN PetscBool PetscEqualScalar(PetscScalar, PetscScalar);
     958             : 
     959             : /*@C
     960             :   PetscIsCloseAtTolScalar - Like `PetscIsCloseAtTol()` but for `PetscScalar`
     961             : 
     962             :   Input Parameters:
     963             : + lhs  - The first number
     964             : . rhs  - The second number
     965             : . rtol - The relative tolerance
     966             : - atol - The absolute tolerance
     967             : 
     968             :   Level: beginner
     969             : 
     970             :   Note:
     971             :   This routine is equivalent to `PetscIsCloseAtTol()` when PETSc is configured without complex
     972             :   numbers.
     973             : 
     974             : .seealso: `PetscIsCloseAtTol()`
     975             : @*/
     976             : static inline PetscBool PetscIsCloseAtTolScalar(PetscScalar lhs, PetscScalar rhs, PetscReal rtol, PetscReal atol)
     977             : {
     978             :   PetscBool close = PetscIsCloseAtTol(PetscRealPart(lhs), PetscRealPart(rhs), rtol, atol);
     979             : 
     980             :   if (PetscDefined(USE_COMPLEX)) close = (PetscBool)(close && PetscIsCloseAtTol(PetscImaginaryPart(lhs), PetscImaginaryPart(rhs), rtol, atol));
     981             :   return close;
     982             : }
     983             : 
     984             : /*
     985             :     These macros are currently hardwired to match the regular data types, so there is no support for a different
     986             :     MatScalar from PetscScalar. We left the MatScalar in the source just in case we use it again.
     987             :  */
     988             : #define MPIU_MATSCALAR MPIU_SCALAR
     989             : typedef PetscScalar MatScalar;
     990             : typedef PetscReal   MatReal;
     991             : 
     992             : struct petsc_mpiu_2scalar {
     993             :   PetscScalar a, b;
     994             : };
     995             : PETSC_EXTERN MPI_Datatype MPIU_2SCALAR PETSC_ATTRIBUTE_MPI_TYPE_TAG_LAYOUT_COMPATIBLE(struct petsc_mpiu_2scalar);
     996             : 
     997             : /* MPI Datatypes for composite reductions */
     998             : struct petsc_mpiu_real_int {
     999             :   PetscReal v;
    1000             :   PetscInt  i;
    1001             : };
    1002             : 
    1003             : struct petsc_mpiu_scalar_int {
    1004             :   PetscScalar v;
    1005             :   PetscInt    i;
    1006             : };
    1007             : 
    1008             : PETSC_EXTERN MPI_Datatype MPIU_REAL_INT PETSC_ATTRIBUTE_MPI_TYPE_TAG_LAYOUT_COMPATIBLE(struct petsc_mpiu_real_int);
    1009             : PETSC_EXTERN MPI_Datatype MPIU_SCALAR_INT PETSC_ATTRIBUTE_MPI_TYPE_TAG_LAYOUT_COMPATIBLE(struct petsc_mpiu_scalar_int);
    1010             : 
    1011             : #if defined(PETSC_USE_64BIT_INDICES)
    1012             : struct /* __attribute__((packed, aligned(alignof(PetscInt *)))) */ petsc_mpiu_2int {
    1013             :   PetscInt a;
    1014             :   PetscInt b;
    1015             : };
    1016             : struct __attribute__((packed)) petsc_mpiu_int_mpiint {
    1017             :   PetscInt    a;
    1018             :   PetscMPIInt b;
    1019             : };
    1020             : /*
    1021             :  static_assert(sizeof(struct petsc_mpiu_2int) == 2 * sizeof(PetscInt), "");
    1022             :  static_assert(alignof(struct petsc_mpiu_2int) == alignof(PetscInt *), "");
    1023             :  static_assert(alignof(struct petsc_mpiu_2int) == alignof(PetscInt[2]), "");
    1024             : 
    1025             :  clang generates warnings that petsc_mpiu_2int is not layout compatible with PetscInt[2] or
    1026             :  PetscInt *, even though (with everything else uncommented) both of the static_asserts above
    1027             :  pass! So we just comment it out...
    1028             : */
    1029             : PETSC_EXTERN MPI_Datatype MPIU_2INT /* PETSC_ATTRIBUTE_MPI_TYPE_TAG_LAYOUT_COMPATIBLE(struct petsc_mpiu_2int) */;
    1030             : PETSC_EXTERN MPI_Datatype MPIU_INT_MPIINT /* PETSC_ATTRIBUTE_MPI_TYPE_TAG_LAYOUT_COMPATIBLE(struct petsc_mpiu_int_mpiint) */;
    1031             : #else
    1032             :   #define MPIU_2INT       MPI_2INT
    1033             :   #define MPIU_INT_MPIINT MPI_2INT
    1034             : #endif
    1035             : PETSC_EXTERN MPI_Datatype MPI_4INT;
    1036             : PETSC_EXTERN MPI_Datatype MPIU_4INT;
    1037             : 
    1038         761 : static inline PetscInt PetscPowInt(PetscInt base, PetscInt power)
    1039             : {
    1040         761 :   PetscInt result = 1;
    1041        4407 :   while (power) {
    1042        2714 :     if (power & 1) result *= base;
    1043        2714 :     power >>= 1;
    1044        2714 :     if (power) base *= base;
    1045             :   }
    1046        1693 :   return result;
    1047             : }
    1048             : 
    1049             : static inline PetscInt64 PetscPowInt64(PetscInt base, PetscInt power)
    1050             : {
    1051             :   PetscInt64 result = 1;
    1052             :   while (power) {
    1053             :     if (power & 1) result *= base;
    1054             :     power >>= 1;
    1055             :     if (power) base *= base;
    1056             :   }
    1057             :   return result;
    1058             : }
    1059             : 
    1060      155066 : static inline PetscReal PetscPowRealInt(PetscReal base, PetscInt power)
    1061             : {
    1062      155066 :   PetscReal result = 1;
    1063      155066 :   if (power < 0) {
    1064         407 :     power = -power;
    1065         407 :     base  = ((PetscReal)1) / base;
    1066             :   }
    1067      466378 :   while (power) {
    1068      311312 :     if (power & 1) result *= base;
    1069      311312 :     power >>= 1;
    1070      311312 :     if (power) base *= base;
    1071             :   }
    1072      155066 :   return result;
    1073             : }
    1074             : 
    1075      154623 : static inline PetscScalar PetscPowScalarInt(PetscScalar base, PetscInt power)
    1076             : {
    1077      154623 :   PetscScalar result = (PetscReal)1;
    1078      154623 :   if (power < 0) {
    1079          22 :     power = -power;
    1080          22 :     base  = ((PetscReal)1) / base;
    1081             :   }
    1082      463848 :   while (power) {
    1083      309225 :     if (power & 1) result *= base;
    1084      309225 :     power >>= 1;
    1085      309225 :     if (power) base *= base;
    1086             :   }
    1087      154623 :   return result;
    1088             : }
    1089             : 
    1090         156 : static inline PetscScalar PetscPowScalarReal(PetscScalar base, PetscReal power)
    1091             : {
    1092         156 :   PetscScalar cpower = power;
    1093         156 :   return PetscPowScalar(base, cpower);
    1094             : }
    1095             : 
    1096             : /*MC
    1097             :    PetscApproximateLTE - Performs a less than or equal to on a given constant with a fudge for floating point numbers
    1098             : 
    1099             :    Synopsis:
    1100             :    #include <petscmath.h>
    1101             :    bool PetscApproximateLTE(PetscReal x,constant float)
    1102             : 
    1103             :    Not Collective
    1104             : 
    1105             :    Input Parameters:
    1106             : +   x - the variable
    1107             : -   b - the constant float it is checking if `x` is less than or equal to
    1108             : 
    1109             :    Level: advanced
    1110             : 
    1111             :    Notes:
    1112             :    The fudge factor is the value `PETSC_SMALL`
    1113             : 
    1114             :    The constant numerical value is automatically set to the appropriate precision of PETSc so can just be provided as, for example, 3.2
    1115             : 
    1116             :    This is used in several examples for setting initial conditions based on coordinate values that are computed with i*h that produces inexact
    1117             :    floating point results.
    1118             : 
    1119             :    Example\:
    1120             : .vb
    1121             :   PetscReal x;
    1122             :   if (PetscApproximateLTE(x, 3.2)) { // replaces if (x <= 3.2) {
    1123             : .ve
    1124             : 
    1125             : .seealso: `PetscMax()`, `PetscMin()`, `PetscAbsInt()`, `PetscAbsReal()`, `PetscApproximateGTE()`
    1126             : M*/
    1127             : #define PetscApproximateLTE(x, b) ((x) <= (PetscRealConstant(b) + PETSC_SMALL))
    1128             : 
    1129             : /*MC
    1130             :    PetscApproximateGTE - Performs a greater than or equal to on a given constant with a fudge for floating point numbers
    1131             : 
    1132             :    Synopsis:
    1133             :    #include <petscmath.h>
    1134             :    bool PetscApproximateGTE(PetscReal x,constant float)
    1135             : 
    1136             :    Not Collective
    1137             : 
    1138             :    Input Parameters:
    1139             : +   x - the variable
    1140             : -   b - the constant float it is checking if `x` is greater than or equal to
    1141             : 
    1142             :    Level: advanced
    1143             : 
    1144             :    Notes:
    1145             :    The fudge factor is the value `PETSC_SMALL`
    1146             : 
    1147             :    The constant numerical value is automatically set to the appropriate precision of PETSc so can just be provided as, for example, 3.2
    1148             : 
    1149             :    This is used in several examples for setting initial conditions based on coordinate values that are computed with i*h that produces inexact
    1150             :    floating point results.
    1151             : 
    1152             :    Example\:
    1153             : .vb
    1154             :   PetscReal x;
    1155             :   if (PetscApproximateGTE(x, 3.2)) {  // replaces if (x >= 3.2) {
    1156             : .ve
    1157             : 
    1158             : .seealso: `PetscMax()`, `PetscMin()`, `PetscAbsInt()`, `PetscAbsReal()`, `PetscApproximateLTE()`
    1159             : M*/
    1160             : #define PetscApproximateGTE(x, b) ((x) >= (PetscRealConstant(b) - PETSC_SMALL))
    1161             : 
    1162             : /*@C
    1163             :    PetscCeilInt - Returns the ceiling of the quotation of two positive integers
    1164             : 
    1165             :    Not Collective
    1166             : 
    1167             :    Input Parameters:
    1168             : +   x - the numerator
    1169             : -   y - the denominator
    1170             : 
    1171             :    Level: advanced
    1172             : 
    1173             :   Example\:
    1174             : .vb
    1175             :   PetscInt n = PetscCeilInt(10, 3); // n has the value of 4
    1176             : .ve
    1177             : 
    1178             : .seealso: `PetscCeilInt64()`, `PetscMax()`, `PetscMin()`, `PetscAbsInt()`, `PetscAbsReal()`, `PetscApproximateLTE()`
    1179             : @*/
    1180             : static inline PetscInt PetscCeilInt(PetscInt x, PetscInt y)
    1181             : {
    1182             :   return x / y + (x % y ? 1 : 0);
    1183             : }
    1184             : 
    1185             : /*@C
    1186             :    PetscCeilInt64 - Returns the ceiling of the quotation of two positive integers
    1187             : 
    1188             :    Not Collective
    1189             : 
    1190             :    Input Parameters:
    1191             : +   x - the numerator
    1192             : -   y - the denominator
    1193             : 
    1194             :    Level: advanced
    1195             : 
    1196             :   Example\:
    1197             : .vb
    1198             :   PetscInt64 n = PetscCeilInt64(10, 3); // n has the value of 4
    1199             : .ve
    1200             : 
    1201             : .seealso: `PetscCeilInt()`, `PetscMax()`, `PetscMin()`, `PetscAbsInt()`, `PetscAbsReal()`, `PetscApproximateLTE()`
    1202             : @*/
    1203             : static inline PetscInt64 PetscCeilInt64(PetscInt64 x, PetscInt64 y)
    1204             : {
    1205             :   return x / y + (x % y ? 1 : 0);
    1206             : }
    1207             : 
    1208             : PETSC_EXTERN PetscErrorCode PetscLinearRegression(PetscInt, const PetscReal[], const PetscReal[], PetscReal *, PetscReal *);

Generated by: LCOV version 1.14