LCOV - code coverage report
Current view: top level - eps/tutorials - ex9.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 145 150 96.7 %
Date: 2024-11-21 00:40:22 Functions: 4 4 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : 
      11             : static char help[] = "Solves a problem associated to the Brusselator wave model in chemical reactions, illustrating the use of shell matrices.\n\n"
      12             :   "The command line options are:\n"
      13             :   "  -n <n>, where <n> = block dimension of the 2x2 block matrix.\n"
      14             :   "  -L <L>, where <L> = bifurcation parameter.\n"
      15             :   "  -alpha <alpha>, -beta <beta>, -delta1 <delta1>,  -delta2 <delta2>,\n"
      16             :   "       where <alpha> <beta> <delta1> <delta2> = model parameters.\n\n";
      17             : 
      18             : #include <slepceps.h>
      19             : 
      20             : /*
      21             :    This example computes the eigenvalues with largest real part of the
      22             :    following matrix
      23             : 
      24             :         A = [ tau1*T+(beta-1)*I     alpha^2*I
      25             :                   -beta*I        tau2*T-alpha^2*I ],
      26             : 
      27             :    where
      28             : 
      29             :         T = tridiag{1,-2,1}
      30             :         h = 1/(n+1)
      31             :         tau1 = delta1/(h*L)^2
      32             :         tau2 = delta2/(h*L)^2
      33             : */
      34             : 
      35             : /*
      36             :    Matrix operations
      37             : */
      38             : PetscErrorCode MatMult_Brussel(Mat,Vec,Vec);
      39             : PetscErrorCode MatMultTranspose_Brussel(Mat,Vec,Vec);
      40             : PetscErrorCode MatGetDiagonal_Brussel(Mat,Vec);
      41             : 
      42             : typedef struct {
      43             :   Mat         T;
      44             :   Vec         x1,x2,y1,y2;
      45             :   PetscScalar alpha,beta,tau1,tau2,sigma;
      46             : } CTX_BRUSSEL;
      47             : 
      48          12 : int main(int argc,char **argv)
      49             : {
      50          12 :   Mat            A;               /* eigenvalue problem matrix */
      51          12 :   EPS            eps;             /* eigenproblem solver context */
      52          12 :   EPSType        type;
      53          12 :   PetscScalar    delta1,delta2,L,h;
      54          12 :   PetscInt       N=30,n,i,Istart,Iend,nev;
      55          12 :   CTX_BRUSSEL    *ctx;
      56          12 :   PetscBool      terse;
      57          12 :   PetscViewer    viewer;
      58             : 
      59          12 :   PetscFunctionBeginUser;
      60          12 :   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
      61             : 
      62          12 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&N,NULL));
      63          12 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nBrusselator wave model, n=%" PetscInt_FMT "\n\n",N));
      64             : 
      65             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      66             :         Generate the matrix
      67             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      68             : 
      69             :   /*
      70             :      Create shell matrix context and set default parameters
      71             :   */
      72          12 :   PetscCall(PetscNew(&ctx));
      73          12 :   ctx->alpha = 2.0;
      74          12 :   ctx->beta  = 5.45;
      75          12 :   delta1     = 0.008;
      76          12 :   delta2     = 0.004;
      77          12 :   L          = 0.51302;
      78             : 
      79             :   /*
      80             :      Look the command line for user-provided parameters
      81             :   */
      82          12 :   PetscCall(PetscOptionsGetScalar(NULL,NULL,"-L",&L,NULL));
      83          12 :   PetscCall(PetscOptionsGetScalar(NULL,NULL,"-alpha",&ctx->alpha,NULL));
      84          12 :   PetscCall(PetscOptionsGetScalar(NULL,NULL,"-beta",&ctx->beta,NULL));
      85          12 :   PetscCall(PetscOptionsGetScalar(NULL,NULL,"-delta1",&delta1,NULL));
      86          12 :   PetscCall(PetscOptionsGetScalar(NULL,NULL,"-delta2",&delta2,NULL));
      87             : 
      88             :   /*
      89             :      Create matrix T
      90             :   */
      91          12 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&ctx->T));
      92          12 :   PetscCall(MatSetSizes(ctx->T,PETSC_DECIDE,PETSC_DECIDE,N,N));
      93          12 :   PetscCall(MatSetFromOptions(ctx->T));
      94             : 
      95          12 :   PetscCall(MatGetOwnershipRange(ctx->T,&Istart,&Iend));
      96         482 :   for (i=Istart;i<Iend;i++) {
      97         470 :     if (i>0) PetscCall(MatSetValue(ctx->T,i,i-1,1.0,INSERT_VALUES));
      98         470 :     if (i<N-1) PetscCall(MatSetValue(ctx->T,i,i+1,1.0,INSERT_VALUES));
      99         470 :     PetscCall(MatSetValue(ctx->T,i,i,-2.0,INSERT_VALUES));
     100             :   }
     101          12 :   PetscCall(MatAssemblyBegin(ctx->T,MAT_FINAL_ASSEMBLY));
     102          12 :   PetscCall(MatAssemblyEnd(ctx->T,MAT_FINAL_ASSEMBLY));
     103          12 :   PetscCall(MatGetLocalSize(ctx->T,&n,NULL));
     104             : 
     105             :   /*
     106             :      Fill the remaining information in the shell matrix context
     107             :      and create auxiliary vectors
     108             :   */
     109          12 :   h = 1.0 / (PetscReal)(N+1);
     110          12 :   ctx->tau1 = delta1 / ((h*L)*(h*L));
     111          12 :   ctx->tau2 = delta2 / ((h*L)*(h*L));
     112          12 :   ctx->sigma = 0.0;
     113          12 :   PetscCall(VecCreateMPIWithArray(PETSC_COMM_WORLD,1,n,PETSC_DECIDE,NULL,&ctx->x1));
     114          12 :   PetscCall(VecCreateMPIWithArray(PETSC_COMM_WORLD,1,n,PETSC_DECIDE,NULL,&ctx->x2));
     115          12 :   PetscCall(VecCreateMPIWithArray(PETSC_COMM_WORLD,1,n,PETSC_DECIDE,NULL,&ctx->y1));
     116          12 :   PetscCall(VecCreateMPIWithArray(PETSC_COMM_WORLD,1,n,PETSC_DECIDE,NULL,&ctx->y2));
     117             : 
     118             :   /*
     119             :      Create the shell matrix
     120             :   */
     121          12 :   PetscCall(MatCreateShell(PETSC_COMM_WORLD,2*n,2*n,2*N,2*N,(void*)ctx,&A));
     122          12 :   PetscCall(MatShellSetOperation(A,MATOP_MULT,(void(*)(void))MatMult_Brussel));
     123          12 :   PetscCall(MatShellSetOperation(A,MATOP_MULT_TRANSPOSE,(void(*)(void))MatMultTranspose_Brussel));
     124          12 :   PetscCall(MatShellSetOperation(A,MATOP_GET_DIAGONAL,(void(*)(void))MatGetDiagonal_Brussel));
     125             : 
     126             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     127             :                 Create the eigensolver and set various options
     128             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     129             : 
     130             :   /*
     131             :      Create eigensolver context
     132             :   */
     133          12 :   PetscCall(EPSCreate(PETSC_COMM_WORLD,&eps));
     134             : 
     135             :   /*
     136             :      Set operators. In this case, it is a standard eigenvalue problem
     137             :   */
     138          12 :   PetscCall(EPSSetOperators(eps,A,NULL));
     139          12 :   PetscCall(EPSSetProblemType(eps,EPS_NHEP));
     140             : 
     141             :   /*
     142             :      Ask for the rightmost eigenvalues
     143             :   */
     144          12 :   PetscCall(EPSSetWhichEigenpairs(eps,EPS_LARGEST_REAL));
     145             : 
     146             :   /*
     147             :      Set other solver options at runtime
     148             :   */
     149          12 :   PetscCall(EPSSetFromOptions(eps));
     150             : 
     151             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     152             :                       Solve the eigensystem
     153             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     154             : 
     155          12 :   PetscCall(EPSSolve(eps));
     156             : 
     157             :   /*
     158             :      Optional: Get some information from the solver and display it
     159             :   */
     160          12 :   PetscCall(EPSGetType(eps,&type));
     161          12 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Solution method: %s\n\n",type));
     162          12 :   PetscCall(EPSGetDimensions(eps,&nev,NULL,NULL));
     163          12 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %" PetscInt_FMT "\n",nev));
     164             : 
     165             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     166             :                     Display solution and clean up
     167             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     168             : 
     169             :   /* show detailed info unless -terse option is given by user */
     170          12 :   PetscCall(PetscOptionsHasName(NULL,NULL,"-terse",&terse));
     171          12 :   if (terse) PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,NULL));
     172             :   else {
     173           0 :     PetscCall(PetscViewerASCIIGetStdout(PETSC_COMM_WORLD,&viewer));
     174           0 :     PetscCall(PetscViewerPushFormat(viewer,PETSC_VIEWER_ASCII_INFO_DETAIL));
     175           0 :     PetscCall(EPSConvergedReasonView(eps,viewer));
     176           0 :     PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,viewer));
     177           0 :     PetscCall(PetscViewerPopFormat(viewer));
     178             :   }
     179          12 :   PetscCall(EPSDestroy(&eps));
     180          12 :   PetscCall(MatDestroy(&A));
     181          12 :   PetscCall(MatDestroy(&ctx->T));
     182          12 :   PetscCall(VecDestroy(&ctx->x1));
     183          12 :   PetscCall(VecDestroy(&ctx->x2));
     184          12 :   PetscCall(VecDestroy(&ctx->y1));
     185          12 :   PetscCall(VecDestroy(&ctx->y2));
     186          12 :   PetscCall(PetscFree(ctx));
     187          12 :   PetscCall(SlepcFinalize());
     188             :   return 0;
     189             : }
     190             : 
     191       19105 : PetscErrorCode MatMult_Brussel(Mat A,Vec x,Vec y)
     192             : {
     193       19105 :   PetscInt          n;
     194       19105 :   const PetscScalar *px;
     195       19105 :   PetscScalar       *py;
     196       19105 :   CTX_BRUSSEL       *ctx;
     197             : 
     198       19105 :   PetscFunctionBeginUser;
     199       19105 :   PetscCall(MatShellGetContext(A,&ctx));
     200       19105 :   PetscCall(MatGetLocalSize(ctx->T,&n,NULL));
     201       19105 :   PetscCall(VecGetArrayRead(x,&px));
     202       19105 :   PetscCall(VecGetArray(y,&py));
     203       19105 :   PetscCall(VecPlaceArray(ctx->x1,px));
     204       19105 :   PetscCall(VecPlaceArray(ctx->x2,px+n));
     205       19105 :   PetscCall(VecPlaceArray(ctx->y1,py));
     206       19105 :   PetscCall(VecPlaceArray(ctx->y2,py+n));
     207             : 
     208       19105 :   PetscCall(MatMult(ctx->T,ctx->x1,ctx->y1));
     209       19105 :   PetscCall(VecScale(ctx->y1,ctx->tau1));
     210       19105 :   PetscCall(VecAXPY(ctx->y1,ctx->beta-1.0+ctx->sigma,ctx->x1));
     211       19105 :   PetscCall(VecAXPY(ctx->y1,ctx->alpha*ctx->alpha,ctx->x2));
     212             : 
     213       19105 :   PetscCall(MatMult(ctx->T,ctx->x2,ctx->y2));
     214       19105 :   PetscCall(VecScale(ctx->y2,ctx->tau2));
     215       19105 :   PetscCall(VecAXPY(ctx->y2,-ctx->beta,ctx->x1));
     216       19105 :   PetscCall(VecAXPY(ctx->y2,-ctx->alpha*ctx->alpha+ctx->sigma,ctx->x2));
     217             : 
     218       19105 :   PetscCall(VecRestoreArrayRead(x,&px));
     219       19105 :   PetscCall(VecRestoreArray(y,&py));
     220       19105 :   PetscCall(VecResetArray(ctx->x1));
     221       19105 :   PetscCall(VecResetArray(ctx->x2));
     222       19105 :   PetscCall(VecResetArray(ctx->y1));
     223       19105 :   PetscCall(VecResetArray(ctx->y2));
     224       19105 :   PetscFunctionReturn(PETSC_SUCCESS);
     225             : }
     226             : 
     227         250 : PetscErrorCode MatMultTranspose_Brussel(Mat A,Vec x,Vec y)
     228             : {
     229         250 :   PetscInt          n;
     230         250 :   const PetscScalar *px;
     231         250 :   PetscScalar       *py;
     232         250 :   CTX_BRUSSEL       *ctx;
     233             : 
     234         250 :   PetscFunctionBeginUser;
     235         250 :   PetscCall(MatShellGetContext(A,&ctx));
     236         250 :   PetscCall(MatGetLocalSize(ctx->T,&n,NULL));
     237         250 :   PetscCall(VecGetArrayRead(x,&px));
     238         250 :   PetscCall(VecGetArray(y,&py));
     239         250 :   PetscCall(VecPlaceArray(ctx->x1,px));
     240         250 :   PetscCall(VecPlaceArray(ctx->x2,px+n));
     241         250 :   PetscCall(VecPlaceArray(ctx->y1,py));
     242         250 :   PetscCall(VecPlaceArray(ctx->y2,py+n));
     243             : 
     244         250 :   PetscCall(MatMultTranspose(ctx->T,ctx->x1,ctx->y1));
     245         250 :   PetscCall(VecScale(ctx->y1,ctx->tau1));
     246         250 :   PetscCall(VecAXPY(ctx->y1,ctx->beta-1.0+ctx->sigma,ctx->x1));
     247         250 :   PetscCall(VecAXPY(ctx->y1,-ctx->beta,ctx->x2));
     248             : 
     249         250 :   PetscCall(MatMultTranspose(ctx->T,ctx->x2,ctx->y2));
     250         250 :   PetscCall(VecScale(ctx->y2,ctx->tau2));
     251         250 :   PetscCall(VecAXPY(ctx->y2,ctx->alpha*ctx->alpha,ctx->x1));
     252         250 :   PetscCall(VecAXPY(ctx->y2,-ctx->alpha*ctx->alpha+ctx->sigma,ctx->x2));
     253             : 
     254         250 :   PetscCall(VecRestoreArrayRead(x,&px));
     255         250 :   PetscCall(VecRestoreArray(y,&py));
     256         250 :   PetscCall(VecResetArray(ctx->x1));
     257         250 :   PetscCall(VecResetArray(ctx->x2));
     258         250 :   PetscCall(VecResetArray(ctx->y1));
     259         250 :   PetscCall(VecResetArray(ctx->y2));
     260         250 :   PetscFunctionReturn(PETSC_SUCCESS);
     261             : }
     262             : 
     263           1 : PetscErrorCode MatGetDiagonal_Brussel(Mat A,Vec diag)
     264             : {
     265           1 :   Vec            d1,d2;
     266           1 :   PetscInt       n;
     267           1 :   PetscScalar    *pd;
     268           1 :   MPI_Comm       comm;
     269           1 :   CTX_BRUSSEL    *ctx;
     270             : 
     271           1 :   PetscFunctionBeginUser;
     272           1 :   PetscCall(MatShellGetContext(A,&ctx));
     273           1 :   PetscCall(PetscObjectGetComm((PetscObject)A,&comm));
     274           1 :   PetscCall(MatGetLocalSize(ctx->T,&n,NULL));
     275           1 :   PetscCall(VecGetArray(diag,&pd));
     276           1 :   PetscCall(VecCreateMPIWithArray(comm,1,n,PETSC_DECIDE,pd,&d1));
     277           1 :   PetscCall(VecCreateMPIWithArray(comm,1,n,PETSC_DECIDE,pd+n,&d2));
     278             : 
     279           1 :   PetscCall(VecSet(d1,-2.0*ctx->tau1 + ctx->beta - 1.0 + ctx->sigma));
     280           1 :   PetscCall(VecSet(d2,-2.0*ctx->tau2 - ctx->alpha*ctx->alpha + ctx->sigma));
     281             : 
     282           1 :   PetscCall(VecDestroy(&d1));
     283           1 :   PetscCall(VecDestroy(&d2));
     284           1 :   PetscCall(VecRestoreArray(diag,&pd));
     285           1 :   PetscFunctionReturn(PETSC_SUCCESS);
     286             : }
     287             : 
     288             : /*TEST
     289             : 
     290             :    test:
     291             :       suffix: 1
     292             :       args: -n 50 -eps_nev 4 -eps_two_sided {{0 1}} -eps_type {{krylovschur lapack}} -terse
     293             :       requires: !single
     294             :       filter: grep -v method
     295             : 
     296             :    test:
     297             :       suffix: 2
     298             :       args: -eps_nev 8 -eps_max_it 300 -eps_target -28 -rg_type interval -rg_interval_endpoints -40,-20,-.1,.1 -terse
     299             :       requires: !single
     300             : 
     301             :    test:
     302             :       suffix: 3
     303             :       args: -n 50 -eps_nev 4 -eps_balance twoside -terse
     304             :       requires: double
     305             :       filter: grep -v method
     306             :       output_file: output/ex9_1.out
     307             : 
     308             :    test:
     309             :       suffix: 4
     310             :       args: -eps_smallest_imaginary -eps_ncv 24 -terse
     311             :       requires: !complex !single
     312             : 
     313             :    test:
     314             :       suffix: 4_complex
     315             :       args: -eps_smallest_imaginary -eps_ncv 24 -terse
     316             :       requires: complex !single
     317             : 
     318             :    test:
     319             :       suffix: 5
     320             :       args: -eps_nev 4 -eps_target_real -eps_target -3 -terse
     321             :       requires: !single
     322             : 
     323             :    test:
     324             :       suffix: 6
     325             :       args: -eps_nev 2 -eps_target_imaginary -eps_target 3i -terse
     326             :       requires: complex !single
     327             : 
     328             :    test:
     329             :       suffix: 7
     330             :       args: -n 40 -eps_nev 1 -eps_type arnoldi -eps_smallest_real -eps_refined -eps_ncv 42 -eps_max_it 300 -terse
     331             :       requires: double
     332             : 
     333             :    test:
     334             :       suffix: 8
     335             :       args: -eps_nev 2 -eps_target -30 -eps_type jd -st_matmode shell -eps_jd_fix 0.0001 -eps_jd_const_correction_tol 0 -terse
     336             :       requires: !single
     337             :       filter: sed -e "s/[+-]0\.0*i//g"
     338             :       timeoutfactor: 2
     339             : 
     340             :    test:
     341             :       suffix: 9
     342             :       args: -eps_largest_imaginary -eps_ncv 24 -terse
     343             :       requires: !single
     344             : 
     345             : TEST*/

Generated by: LCOV version 1.14