LCOV - code coverage report
Current view: top level - eps/tutorials - ex19.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 77 120 64.2 %
Date: 2024-11-21 00:40:22 Functions: 2 3 66.7 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : 
      11             : static char help[] = "Standard symmetric eigenproblem for the 3-D Laplacian built with the DM interface.\n\n"
      12             : "Use -seed <k> to modify the random initial vector.\n"
      13             : "Use -da_grid_x <nx> etc. to change the problem size.\n\n";
      14             : 
      15             : #include <slepceps.h>
      16             : #include <petscdmda.h>
      17             : #include <petsctime.h>
      18             : 
      19           0 : PetscErrorCode GetExactEigenvalues(PetscInt M,PetscInt N,PetscInt P,PetscInt nconv,PetscReal *exact)
      20             : {
      21           0 :   PetscInt       n,i,j,k,l;
      22           0 :   PetscReal      *evals,ax,ay,az,sx,sy,sz;
      23             : 
      24           0 :   PetscFunctionBeginUser;
      25           0 :   ax = PETSC_PI/2/(M+1);
      26           0 :   ay = PETSC_PI/2/(N+1);
      27           0 :   az = PETSC_PI/2/(P+1);
      28           0 :   n = PetscCeilReal(PetscPowReal((PetscReal)nconv,0.33333)+1);
      29           0 :   PetscCall(PetscMalloc1(n*n*n,&evals));
      30             :   l = 0;
      31           0 :   for (i=1;i<=n;i++) {
      32           0 :     sx = PetscSinReal(ax*i);
      33           0 :     for (j=1;j<=n;j++) {
      34           0 :       sy = PetscSinReal(ay*j);
      35           0 :       for (k=1;k<=n;k++) {
      36           0 :         sz = PetscSinReal(az*k);
      37           0 :         evals[l++] = 4.0*(sx*sx+sy*sy+sz*sz);
      38             :       }
      39             :     }
      40             :   }
      41           0 :   PetscCall(PetscSortReal(n*n*n,evals));
      42           0 :   for (i=0;i<nconv;i++) exact[i] = evals[i];
      43           0 :   PetscCall(PetscFree(evals));
      44           0 :   PetscFunctionReturn(PETSC_SUCCESS);
      45             : }
      46             : 
      47           3 : PetscErrorCode FillMatrix(DM da,Mat A)
      48             : {
      49           3 :   PetscInt       i,j,k,mx,my,mz,xm,ym,zm,xs,ys,zs,idx;
      50           3 :   PetscScalar    v[7];
      51           3 :   MatStencil     row,col[7];
      52             : 
      53           3 :   PetscFunctionBeginUser;
      54           3 :   PetscCall(DMDAGetInfo(da,0,&mx,&my,&mz,0,0,0,0,0,0,0,0,0));
      55           3 :   PetscCall(DMDAGetCorners(da,&xs,&ys,&zs,&xm,&ym,&zm));
      56             : 
      57          33 :   for (k=zs;k<zs+zm;k++) {
      58         330 :     for (j=ys;j<ys+ym;j++) {
      59        3300 :       for (i=xs;i<xs+xm;i++) {
      60        3000 :         row.i=i; row.j=j; row.k=k;
      61        3000 :         col[0].i=row.i; col[0].j=row.j; col[0].k=row.k;
      62        3000 :         v[0]=6.0;
      63        3000 :         idx=1;
      64        3000 :         if (k>0) { v[idx]=-1.0; col[idx].i=i; col[idx].j=j; col[idx].k=k-1; idx++; }
      65        3000 :         if (j>0) { v[idx]=-1.0; col[idx].i=i; col[idx].j=j-1; col[idx].k=k; idx++; }
      66        3000 :         if (i>0) { v[idx]=-1.0; col[idx].i=i-1; col[idx].j=j; col[idx].k=k; idx++; }
      67        3000 :         if (i<mx-1) { v[idx]=-1.0; col[idx].i=i+1; col[idx].j=j; col[idx].k=k; idx++; }
      68        3000 :         if (j<my-1) { v[idx]=-1.0; col[idx].i=i; col[idx].j=j+1; col[idx].k=k; idx++; }
      69        3000 :         if (k<mz-1) { v[idx]=-1.0; col[idx].i=i; col[idx].j=j; col[idx].k=k+1; idx++; }
      70        3000 :         PetscCall(MatSetValuesStencil(A,1,&row,idx,col,v,INSERT_VALUES));
      71             :       }
      72             :     }
      73             :   }
      74           3 :   PetscCall(MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY));
      75           3 :   PetscCall(MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY));
      76           3 :   PetscFunctionReturn(PETSC_SUCCESS);
      77             : }
      78             : 
      79           3 : int main(int argc,char **argv)
      80             : {
      81           3 :   Mat            A;               /* operator matrix */
      82           3 :   EPS            eps;             /* eigenproblem solver context */
      83           3 :   EPSType        type;
      84           3 :   DM             da;
      85           3 :   Vec            v0;
      86           3 :   PetscReal      error,tol,re,im,*exact;
      87           3 :   PetscScalar    kr,ki;
      88           3 :   PetscInt       M,N,P,m,n,p,nev,maxit,i,its,nconv,seed;
      89           3 :   PetscLogDouble t1,t2,t3;
      90           3 :   PetscBool      flg,terse;
      91           3 :   PetscRandom    rctx;
      92             : 
      93           3 :   PetscFunctionBeginUser;
      94           3 :   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
      95             : 
      96           3 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\n3-D Laplacian Eigenproblem\n\n"));
      97             : 
      98             :   /* show detailed info unless -terse option is given by user */
      99           3 :   PetscCall(PetscOptionsHasName(NULL,NULL,"-terse",&terse));
     100             : 
     101             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     102             :      Compute the operator matrix that defines the eigensystem, Ax=kx
     103             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     104             : 
     105           3 :   PetscCall(DMDACreate3d(PETSC_COMM_WORLD,DM_BOUNDARY_NONE,DM_BOUNDARY_NONE,
     106             :                       DM_BOUNDARY_NONE,DMDA_STENCIL_STAR,10,10,10,
     107             :                       PETSC_DECIDE,PETSC_DECIDE,PETSC_DECIDE,
     108             :                       1,1,NULL,NULL,NULL,&da));
     109           3 :   PetscCall(DMSetFromOptions(da));
     110           3 :   PetscCall(DMSetUp(da));
     111             : 
     112             :   /* print DM information */
     113           3 :   PetscCall(DMDAGetInfo(da,NULL,&M,&N,&P,&m,&n,&p,NULL,NULL,NULL,NULL,NULL,NULL));
     114           3 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Grid partitioning: %" PetscInt_FMT " %" PetscInt_FMT " %" PetscInt_FMT "\n",m,n,p));
     115             : 
     116             :   /* create and fill the matrix */
     117           3 :   PetscCall(DMCreateMatrix(da,&A));
     118           3 :   PetscCall(FillMatrix(da,A));
     119             : 
     120             :   /* create random initial vector */
     121           3 :   seed = 1;
     122           3 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-seed",&seed,NULL));
     123           3 :   PetscCheck(seed>=0,PETSC_COMM_WORLD,PETSC_ERR_USER_INPUT,"Seed must be >=0");
     124           3 :   PetscCall(MatCreateVecs(A,&v0,NULL));
     125           3 :   PetscCall(PetscRandomCreate(PETSC_COMM_WORLD,&rctx));
     126           3 :   PetscCall(PetscRandomSetFromOptions(rctx));
     127           6 :   for (i=0;i<seed;i++) {   /* simulate different seeds in the random generator */
     128           3 :     PetscCall(VecSetRandom(v0,rctx));
     129             :   }
     130             : 
     131             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     132             :                 Create the eigensolver and set various options
     133             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     134             : 
     135             :   /*
     136             :      Create eigensolver context
     137             :   */
     138           3 :   PetscCall(EPSCreate(PETSC_COMM_WORLD,&eps));
     139             : 
     140             :   /*
     141             :      Set operators. In this case, it is a standard eigenvalue problem
     142             :   */
     143           3 :   PetscCall(EPSSetOperators(eps,A,NULL));
     144           3 :   PetscCall(EPSSetProblemType(eps,EPS_HEP));
     145             : 
     146             :   /*
     147             :      Set specific solver options
     148             :   */
     149           3 :   PetscCall(EPSSetWhichEigenpairs(eps,EPS_SMALLEST_REAL));
     150           3 :   PetscCall(EPSSetTolerances(eps,1e-8,PETSC_CURRENT));
     151           3 :   PetscCall(EPSSetInitialSpace(eps,1,&v0));
     152             : 
     153             :   /*
     154             :      Set solver parameters at runtime
     155             :   */
     156           3 :   PetscCall(EPSSetFromOptions(eps));
     157             : 
     158             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     159             :                       Solve the eigensystem
     160             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     161             : 
     162           3 :   PetscCall(PetscTime(&t1));
     163           3 :   PetscCall(EPSSetUp(eps));
     164           3 :   PetscCall(PetscTime(&t2));
     165           3 :   PetscCall(EPSSolve(eps));
     166           3 :   PetscCall(PetscTime(&t3));
     167           3 :   if (!terse) {
     168           0 :     PetscCall(EPSGetIterationNumber(eps,&its));
     169           0 :     PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of iterations of the method: %" PetscInt_FMT "\n",its));
     170             : 
     171             :     /*
     172             :        Optional: Get some information from the solver and display it
     173             :     */
     174           0 :     PetscCall(EPSGetType(eps,&type));
     175           0 :     PetscCall(PetscPrintf(PETSC_COMM_WORLD," Solution method: %s\n\n",type));
     176           0 :     PetscCall(EPSGetDimensions(eps,&nev,NULL,NULL));
     177           0 :     PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %" PetscInt_FMT "\n",nev));
     178           0 :     PetscCall(EPSGetTolerances(eps,&tol,&maxit));
     179           0 :     PetscCall(PetscPrintf(PETSC_COMM_WORLD," Stopping condition: tol=%.4g, maxit=%" PetscInt_FMT "\n",(double)tol,maxit));
     180             :   }
     181             : 
     182             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     183             :                     Display solution and clean up
     184             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     185             : 
     186           3 :   if (terse) PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,NULL));
     187             :   else {
     188             :     /*
     189             :        Get number of converged approximate eigenpairs
     190             :     */
     191           0 :     PetscCall(EPSGetConverged(eps,&nconv));
     192           0 :     PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of converged approximate eigenpairs: %" PetscInt_FMT "\n\n",nconv));
     193             : 
     194           0 :     if (nconv>0) {
     195           0 :       PetscCall(PetscMalloc1(nconv,&exact));
     196           0 :       PetscCall(GetExactEigenvalues(M,N,P,nconv,exact));
     197             :       /*
     198             :          Display eigenvalues and relative errors
     199             :       */
     200           0 :       PetscCall(PetscPrintf(PETSC_COMM_WORLD,
     201             :            "           k          ||Ax-kx||/||kx||   Eigenvalue Error \n"
     202             :            "   ----------------- ------------------ ------------------\n"));
     203             : 
     204           0 :       for (i=0;i<nconv;i++) {
     205             :         /*
     206             :           Get converged eigenpairs: i-th eigenvalue is stored in kr (real part) and
     207             :           ki (imaginary part)
     208             :         */
     209           0 :         PetscCall(EPSGetEigenpair(eps,i,&kr,&ki,NULL,NULL));
     210             :         /*
     211             :            Compute the relative error associated to each eigenpair
     212             :         */
     213           0 :         PetscCall(EPSComputeError(eps,i,EPS_ERROR_RELATIVE,&error));
     214             : 
     215             : #if defined(PETSC_USE_COMPLEX)
     216           0 :         re = PetscRealPart(kr);
     217           0 :         im = PetscImaginaryPart(kr);
     218             : #else
     219             :         re = kr;
     220             :         im = ki;
     221             : #endif
     222           0 :         PetscCheck(im==0.0,PETSC_COMM_WORLD,PETSC_ERR_PLIB,"Eigenvalue should be real");
     223           0 :         PetscCall(PetscPrintf(PETSC_COMM_WORLD,"   %12g       %12g        %12g\n",(double)re,(double)error,(double)PetscAbsReal(re-exact[i])));
     224             :       }
     225           0 :       PetscCall(PetscFree(exact));
     226           0 :       PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\n"));
     227             :     }
     228             :   }
     229             : 
     230             :   /*
     231             :      Show computing times
     232             :   */
     233           3 :   PetscCall(PetscOptionsHasName(NULL,NULL,"-showtimes",&flg));
     234           3 :   if (flg) PetscCall(PetscPrintf(PETSC_COMM_WORLD," Elapsed time: %g (setup), %g (solve)\n",(double)(t2-t1),(double)(t3-t2)));
     235             : 
     236             :   /*
     237             :      Free work space
     238             :   */
     239           3 :   PetscCall(EPSDestroy(&eps));
     240           3 :   PetscCall(MatDestroy(&A));
     241           3 :   PetscCall(VecDestroy(&v0));
     242           3 :   PetscCall(PetscRandomDestroy(&rctx));
     243           3 :   PetscCall(DMDestroy(&da));
     244           3 :   PetscCall(SlepcFinalize());
     245             :   return 0;
     246             : }
     247             : 
     248             : /*TEST
     249             : 
     250             :    testset:
     251             :       args: -eps_nev 8 -terse
     252             :       requires: double
     253             :       output_file: output/ex19_1.out
     254             :       test:
     255             :          suffix: 1_krylovschur
     256             :          args: -eps_type krylovschur -eps_ncv 64
     257             :       test:
     258             :          suffix: 1_lobpcg
     259             :          args: -eps_type lobpcg -eps_tol 1e-7
     260             :       test:
     261             :          suffix: 1_blopex
     262             :          args: -eps_type blopex -eps_tol 1e-7 -eps_blopex_blocksize 4 -st_ksp_type preonly
     263             :          requires: blopex
     264             : 
     265             : TEST*/

Generated by: LCOV version 1.14