LCOV - code coverage report
Current view: top level - eps/tutorials - ex11.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 48 52 92.3 %
Date: 2024-11-21 00:40:22 Functions: 1 1 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : 
      11             : static char help[] = "Computes the smallest nonzero eigenvalue of the Laplacian of a graph.\n\n"
      12             :   "This example illustrates EPSSetDeflationSpace(). The example graph corresponds to a "
      13             :   "2-D regular mesh. The command line options are:\n"
      14             :   "  -n <n>, where <n> = number of grid subdivisions in x dimension.\n"
      15             :   "  -m <m>, where <m> = number of grid subdivisions in y dimension.\n\n";
      16             : 
      17             : #include <slepceps.h>
      18             : 
      19           2 : int main (int argc,char **argv)
      20             : {
      21           2 :   EPS            eps;             /* eigenproblem solver context */
      22           2 :   Mat            A;               /* operator matrix */
      23           2 :   Vec            x;
      24           2 :   EPSType        type;
      25           2 :   PetscInt       N,n=10,m,i,j,II,Istart,Iend,nev;
      26           2 :   PetscScalar    w;
      27           2 :   PetscBool      flag,terse;
      28             : 
      29           2 :   PetscFunctionBeginUser;
      30           2 :   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
      31             : 
      32           2 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
      33           2 :   PetscCall(PetscOptionsGetInt(NULL,NULL,"-m",&m,&flag));
      34           2 :   if (!flag) m=n;
      35           2 :   N = n*m;
      36           2 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nFiedler vector of a 2-D regular mesh, N=%" PetscInt_FMT " (%" PetscInt_FMT "x%" PetscInt_FMT " grid)\n\n",N,n,m));
      37             : 
      38             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      39             :      Compute the operator matrix that defines the eigensystem, Ax=kx
      40             :      In this example, A = L(G), where L is the Laplacian of graph G, i.e.
      41             :      Lii = degree of node i, Lij = -1 if edge (i,j) exists in G
      42             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      43             : 
      44           2 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&A));
      45           2 :   PetscCall(MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,N,N));
      46           2 :   PetscCall(MatSetFromOptions(A));
      47             : 
      48           2 :   PetscCall(MatGetOwnershipRange(A,&Istart,&Iend));
      49         202 :   for (II=Istart;II<Iend;II++) {
      50         200 :     i = II/n; j = II-i*n;
      51         200 :     w = 0.0;
      52         200 :     if (i>0) { PetscCall(MatSetValue(A,II,II-n,-1.0,INSERT_VALUES)); w=w+1.0; }
      53         200 :     if (i<m-1) { PetscCall(MatSetValue(A,II,II+n,-1.0,INSERT_VALUES)); w=w+1.0; }
      54         200 :     if (j>0) { PetscCall(MatSetValue(A,II,II-1,-1.0,INSERT_VALUES)); w=w+1.0; }
      55         200 :     if (j<n-1) { PetscCall(MatSetValue(A,II,II+1,-1.0,INSERT_VALUES)); w=w+1.0; }
      56         200 :     PetscCall(MatSetValue(A,II,II,w,INSERT_VALUES));
      57             :   }
      58             : 
      59           2 :   PetscCall(MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY));
      60           2 :   PetscCall(MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY));
      61             : 
      62             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      63             :                 Create the eigensolver and set various options
      64             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      65             : 
      66             :   /*
      67             :      Create eigensolver context
      68             :   */
      69           2 :   PetscCall(EPSCreate(PETSC_COMM_WORLD,&eps));
      70             : 
      71             :   /*
      72             :      Set operators. In this case, it is a standard eigenvalue problem
      73             :   */
      74           2 :   PetscCall(EPSSetOperators(eps,A,NULL));
      75           2 :   PetscCall(EPSSetProblemType(eps,EPS_HEP));
      76             : 
      77             :   /*
      78             :      Select portion of spectrum
      79             :   */
      80           2 :   PetscCall(EPSSetWhichEigenpairs(eps,EPS_SMALLEST_REAL));
      81             : 
      82             :   /*
      83             :      Set solver parameters at runtime
      84             :   */
      85           2 :   PetscCall(EPSSetFromOptions(eps));
      86             : 
      87             :   /*
      88             :      Attach deflation space: in this case, the matrix has a constant
      89             :      nullspace, [1 1 ... 1]^T is the eigenvector of the zero eigenvalue
      90             :   */
      91           2 :   PetscCall(MatCreateVecs(A,&x,NULL));
      92           2 :   PetscCall(VecSet(x,1.0));
      93           2 :   PetscCall(EPSSetDeflationSpace(eps,1,&x));
      94           2 :   PetscCall(VecDestroy(&x));
      95             : 
      96             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      97             :                       Solve the eigensystem
      98             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      99             : 
     100           2 :   PetscCall(EPSSolve(eps));
     101             : 
     102             :   /*
     103             :      Optional: Get some information from the solver and display it
     104             :   */
     105           2 :   PetscCall(EPSGetType(eps,&type));
     106           2 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Solution method: %s\n\n",type));
     107           2 :   PetscCall(EPSGetDimensions(eps,&nev,NULL,NULL));
     108           2 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %" PetscInt_FMT "\n",nev));
     109             : 
     110             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     111             :                     Display solution and clean up
     112             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
     113             : 
     114             :   /* show detailed info unless -terse option is given by user */
     115           2 :   PetscCall(PetscOptionsHasName(NULL,NULL,"-terse",&terse));
     116           2 :   if (terse) PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,NULL));
     117             :   else {
     118           0 :     PetscCall(PetscViewerPushFormat(PETSC_VIEWER_STDOUT_WORLD,PETSC_VIEWER_ASCII_INFO_DETAIL));
     119           0 :     PetscCall(EPSConvergedReasonView(eps,PETSC_VIEWER_STDOUT_WORLD));
     120           0 :     PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,PETSC_VIEWER_STDOUT_WORLD));
     121           0 :     PetscCall(PetscViewerPopFormat(PETSC_VIEWER_STDOUT_WORLD));
     122             :   }
     123           2 :   PetscCall(EPSDestroy(&eps));
     124           2 :   PetscCall(MatDestroy(&A));
     125           2 :   PetscCall(SlepcFinalize());
     126             :   return 0;
     127             : }
     128             : 
     129             : /*TEST
     130             : 
     131             :    testset:
     132             :       args: -eps_nev 4 -terse
     133             :       output_file: output/ex11_1.out
     134             :       test:
     135             :          suffix: 1
     136             :          args: -eps_krylovschur_restart .2
     137             :       test:
     138             :          suffix: 2
     139             :          args: -eps_ncv 20 -eps_target 0 -st_type sinvert -st_ksp_type cg -st_pc_type jacobi
     140             : 
     141             : TEST*/

Generated by: LCOV version 1.14