Line data Source code
1 : /*
2 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 : SLEPc - Scalable Library for Eigenvalue Problem Computations
4 : Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
5 :
6 : This file is part of SLEPc.
7 : SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9 : */
10 :
11 : static char help[] = "Tests a GHEP problem with symmetric matrices.\n\n";
12 :
13 : #include <slepceps.h>
14 :
15 25 : int main(int argc,char **argv)
16 : {
17 25 : Mat A,B; /* matrices */
18 25 : EPS eps; /* eigenproblem solver context */
19 25 : ST st;
20 25 : KSP ksp;
21 25 : PC pc;
22 25 : PCType pctype;
23 25 : PetscInt N,n=45,m,Istart,Iend,II,i,j;
24 25 : PetscBool flag;
25 :
26 25 : PetscFunctionBeginUser;
27 25 : PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
28 25 : PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
29 25 : PetscCall(PetscOptionsGetInt(NULL,NULL,"-m",&m,&flag));
30 25 : if (!flag) m=n;
31 25 : N = n*m;
32 25 : PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nGeneralized Symmetric Eigenproblem, N=%" PetscInt_FMT " (%" PetscInt_FMT "x%" PetscInt_FMT " grid)\n\n",N,n,m));
33 :
34 : /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
35 : Compute the matrices that define the eigensystem, Ax=kBx
36 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
37 :
38 25 : PetscCall(MatCreate(PETSC_COMM_WORLD,&A));
39 25 : PetscCall(MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,N,N));
40 25 : PetscCall(MatSetFromOptions(A));
41 :
42 25 : PetscCall(MatCreate(PETSC_COMM_WORLD,&B));
43 25 : PetscCall(MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,N,N));
44 25 : PetscCall(MatSetFromOptions(B));
45 :
46 25 : PetscCall(MatGetOwnershipRange(A,&Istart,&Iend));
47 3210 : for (II=Istart;II<Iend;II++) {
48 3185 : i = II/n; j = II-i*n;
49 3185 : if (i>0) PetscCall(MatSetValue(A,II,II-n,-1.0,INSERT_VALUES));
50 3185 : if (i<m-1) PetscCall(MatSetValue(A,II,II+n,-1.0,INSERT_VALUES));
51 3185 : if (j>0) PetscCall(MatSetValue(A,II,II-1,-1.0,INSERT_VALUES));
52 3185 : if (j<n-1) PetscCall(MatSetValue(A,II,II+1,-1.0,INSERT_VALUES));
53 3185 : PetscCall(MatSetValue(A,II,II,4.0,INSERT_VALUES));
54 3185 : PetscCall(MatSetValue(B,II,II,2.0/PetscLogScalar(II+2),INSERT_VALUES));
55 : }
56 25 : PetscCall(MatSetValue(B,0,1,0.4,INSERT_VALUES));
57 25 : PetscCall(MatSetValue(B,1,0,0.4,INSERT_VALUES));
58 :
59 25 : PetscCall(MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY));
60 25 : PetscCall(MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY));
61 25 : PetscCall(MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY));
62 25 : PetscCall(MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY));
63 :
64 25 : PetscCall(MatSetOption(A,MAT_SYMMETRIC,PETSC_TRUE));
65 25 : PetscCall(MatSetOption(A,MAT_HERMITIAN,PETSC_TRUE));
66 25 : PetscCall(MatSetOption(B,MAT_SYMMETRIC,PETSC_TRUE));
67 25 : PetscCall(MatSetOption(B,MAT_HERMITIAN,PETSC_TRUE));
68 :
69 : /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
70 : Create the eigensolver and solve the problem
71 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
72 :
73 25 : PetscCall(EPSCreate(PETSC_COMM_WORLD,&eps));
74 25 : PetscCall(EPSSetOperators(eps,A,B));
75 25 : PetscCall(EPSSetProblemType(eps,EPS_GHEP));
76 25 : PetscCall(EPSSetFromOptions(eps));
77 25 : PetscCall(EPSSetUp(eps));
78 25 : PetscCall(EPSGetST(eps,&st));
79 25 : PetscCall(STGetKSP(st,&ksp));
80 25 : PetscCall(KSPGetPC(ksp,&pc));
81 25 : PetscCall(PCGetType(pc,&pctype));
82 25 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Using %s for the PC\n",pctype));
83 25 : PetscCall(EPSSolve(eps));
84 25 : PetscCall(EPSErrorView(eps,EPS_ERROR_BACKWARD,NULL));
85 :
86 25 : PetscCall(EPSDestroy(&eps));
87 25 : PetscCall(MatDestroy(&A));
88 25 : PetscCall(MatDestroy(&B));
89 25 : PetscCall(SlepcFinalize());
90 : return 0;
91 : }
92 :
93 : /*TEST
94 :
95 : test:
96 : suffix: 1
97 : args: -n 18 -eps_nev 3 -st_type sinvert -eps_target 1.02
98 :
99 : test:
100 : suffix: 2
101 : args: -n 18 -eps_type ciss -rg_interval_endpoints 1.0,1.2
102 : requires: !single
103 :
104 : testset:
105 : nsize: {{1 4}}
106 : args: -n 8 -eps_nev 60 -st_pc_type redundant
107 : filter: grep -v Using
108 : requires: !single
109 : output_file: output/test32_3.out
110 : test:
111 : suffix: 3
112 : test:
113 : suffix: 3_gnhep
114 : args: -eps_gen_non_hermitian
115 :
116 : testset:
117 : nsize: {{1 4}}
118 : args: -n 8 -eps_nev 64 -st_pc_type redundant
119 : filter: grep -v Using
120 : requires: !single
121 : output_file: output/test32_4.out
122 : test:
123 : suffix: 4
124 : test:
125 : suffix: 4_gnhep
126 : args: -eps_gen_non_hermitian
127 :
128 : testset:
129 : requires: !single
130 : args: -eps_tol 1e-10 -st_type sinvert -st_ksp_type preonly -st_pc_type cholesky -eps_interval .8,1.1 -eps_krylovschur_partitions 2
131 : output_file: output/test32_5.out
132 : nsize: 3
133 : filter: grep -v Using
134 : test:
135 : suffix: 5_redundant
136 : args: -st_pc_type redundant -st_redundant_pc_type cholesky
137 : test:
138 : suffix: 5_mumps
139 : requires: mumps !complex
140 : args: -st_pc_factor_mat_solver_type mumps -st_mat_mumps_icntl_13 1
141 : test:
142 : suffix: 5_superlu
143 : requires: superlu_dist
144 : args: -st_pc_factor_mat_solver_type superlu_dist -st_mat_superlu_dist_rowperm NOROWPERM
145 : timeoutfactor: 10
146 :
147 : TEST*/
|