LCOV - code coverage report
Current view: top level - eps/tests - test29.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 88 91 96.7 %
Date: 2024-12-18 00:51:33 Functions: 2 2 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : 
      11             : static char help[] = "Illustrates the computation of left eigenvectors for generalized eigenproblems.\n\n"
      12             :   "The command line options are:\n"
      13             :   "  -f1 <filename> -f2 <filename>, PETSc binary files containing A and B\n\n";
      14             : 
      15             : #include <slepceps.h>
      16             : 
      17             : /*
      18             :    User-defined routines
      19             : */
      20             : PetscErrorCode ComputeResidualNorm(Mat,Mat,PetscBool,PetscScalar,PetscScalar,Vec,Vec,Vec*,PetscReal*);
      21             : 
      22           1 : int main(int argc,char **argv)
      23             : {
      24           1 :   Mat            A,B;
      25           1 :   EPS            eps;
      26           1 :   EPSType        type;
      27           1 :   PetscInt       i,nconv;
      28           1 :   PetscBool      twosided,flg;
      29           1 :   PetscReal      nrmr,nrml=0.0,re,im,lev;
      30           1 :   PetscScalar    *kr,*ki;
      31           1 :   Vec            t,*xr,*xi,*yr,*yi,*z;
      32           1 :   char           filename[PETSC_MAX_PATH_LEN];
      33           1 :   PetscViewer    viewer;
      34             : 
      35           1 :   PetscFunctionBeginUser;
      36           1 :   PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
      37             : 
      38             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      39             :         Load the matrices that define the eigensystem, Ax=kBx
      40             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      41             : 
      42           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nGeneralized eigenproblem stored in file.\n\n"));
      43           1 :   PetscCall(PetscOptionsGetString(NULL,NULL,"-f1",filename,sizeof(filename),&flg));
      44           1 :   PetscCheck(flg,PETSC_COMM_WORLD,PETSC_ERR_USER_INPUT,"Must indicate a file name for matrix A with the -f1 option");
      45             : 
      46             : #if defined(PETSC_USE_COMPLEX)
      47           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Reading COMPLEX matrices from binary files...\n"));
      48             : #else
      49             :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Reading REAL matrices from binary files...\n"));
      50             : #endif
      51           1 :   PetscCall(PetscViewerBinaryOpen(PETSC_COMM_WORLD,filename,FILE_MODE_READ,&viewer));
      52           1 :   PetscCall(MatCreate(PETSC_COMM_WORLD,&A));
      53           1 :   PetscCall(MatSetFromOptions(A));
      54           1 :   PetscCall(MatLoad(A,viewer));
      55           1 :   PetscCall(PetscViewerDestroy(&viewer));
      56             : 
      57           1 :   PetscCall(PetscOptionsGetString(NULL,NULL,"-f2",filename,sizeof(filename),&flg));
      58           1 :   if (flg) {
      59           1 :     PetscCall(PetscViewerBinaryOpen(PETSC_COMM_WORLD,filename,FILE_MODE_READ,&viewer));
      60           1 :     PetscCall(MatCreate(PETSC_COMM_WORLD,&B));
      61           1 :     PetscCall(MatSetFromOptions(B));
      62           1 :     PetscCall(MatLoad(B,viewer));
      63           1 :     PetscCall(PetscViewerDestroy(&viewer));
      64             :   } else {
      65           0 :     PetscCall(PetscPrintf(PETSC_COMM_WORLD," Matrix B was not provided, setting B=I\n\n"));
      66           0 :     B = NULL;
      67             :   }
      68           1 :   PetscCall(MatCreateVecs(A,NULL,&t));
      69             : 
      70             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      71             :                 Create the eigensolver and set various options
      72             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      73             : 
      74           1 :   PetscCall(EPSCreate(PETSC_COMM_WORLD,&eps));
      75           1 :   PetscCall(EPSSetOperators(eps,A,B));
      76             : 
      77             :   /* use a two-sided algorithm to compute left eigenvectors as well */
      78           1 :   PetscCall(EPSSetTwoSided(eps,PETSC_TRUE));
      79             : 
      80             :   /* allow user to change settings at run time */
      81           1 :   PetscCall(EPSSetFromOptions(eps));
      82           1 :   PetscCall(EPSGetTwoSided(eps,&twosided));
      83             : 
      84             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      85             :                       Solve the eigensystem
      86             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      87             : 
      88           1 :   PetscCall(EPSSolve(eps));
      89             : 
      90             :   /*
      91             :      Optional: Get some information from the solver and display it
      92             :   */
      93           1 :   PetscCall(EPSGetType(eps,&type));
      94           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Solution method: %s\n\n",type));
      95             : 
      96             :   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      97             :                     Display solution and clean up
      98             :      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
      99             : 
     100             :   /*
     101             :      Get number of converged approximate eigenpairs
     102             :   */
     103           1 :   PetscCall(EPSGetConverged(eps,&nconv));
     104           1 :   PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of converged eigenpairs: %" PetscInt_FMT "\n\n",nconv));
     105           1 :   PetscCall(PetscMalloc2(nconv,&kr,nconv,&ki));
     106           1 :   PetscCall(VecDuplicateVecs(t,3,&z));
     107           1 :   PetscCall(VecDuplicateVecs(t,nconv,&xr));
     108           1 :   PetscCall(VecDuplicateVecs(t,nconv,&xi));
     109           1 :   if (twosided) {
     110           1 :     PetscCall(VecDuplicateVecs(t,nconv,&yr));
     111           1 :     PetscCall(VecDuplicateVecs(t,nconv,&yi));
     112             :   }
     113             : 
     114           1 :   if (nconv>0) {
     115             :     /*
     116             :        Display eigenvalues and relative errors
     117             :     */
     118           1 :     PetscCall(PetscPrintf(PETSC_COMM_WORLD,
     119             :          "           k            ||Ax-kBx||         ||y'A-y'Bk||\n"
     120             :          "   ---------------- ------------------ ------------------\n"));
     121             : 
     122           7 :     for (i=0;i<nconv;i++) {
     123             :       /*
     124             :         Get converged eigenpairs: i-th eigenvalue is stored in kr (real part) and
     125             :         ki (imaginary part)
     126             :       */
     127           6 :       PetscCall(EPSGetEigenpair(eps,i,&kr[i],&ki[i],xr[i],xi[i]));
     128           6 :       if (twosided) PetscCall(EPSGetLeftEigenvector(eps,i,yr[i],yi[i]));
     129             :       /*
     130             :          Compute the residual norms associated to each eigenpair
     131             :       */
     132           6 :       PetscCall(ComputeResidualNorm(A,B,PETSC_FALSE,kr[i],ki[i],xr[i],xi[i],z,&nrmr));
     133           6 :       if (twosided) PetscCall(ComputeResidualNorm(A,B,PETSC_TRUE,kr[i],ki[i],yr[i],yi[i],z,&nrml));
     134             : 
     135             : #if defined(PETSC_USE_COMPLEX)
     136           6 :       re = PetscRealPart(kr[i]);
     137           6 :       im = PetscImaginaryPart(kr[i]);
     138             : #else
     139             :       re = kr[i];
     140             :       im = ki[i];
     141             : #endif
     142           6 :       if (im!=0.0) PetscCall(PetscPrintf(PETSC_COMM_WORLD," %8f%+8fi %12g       %12g\n",(double)re,(double)im,(double)nrmr,(double)nrml));
     143           6 :       else PetscCall(PetscPrintf(PETSC_COMM_WORLD,"   %12f       %12g       %12g\n",(double)re,(double)nrmr,(double)nrml));
     144             :     }
     145           1 :     PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\n"));
     146             :     /*
     147             :        Check bi-orthogonality of eigenvectors
     148             :     */
     149           1 :     if (twosided) {
     150           1 :       PetscCall(VecCheckOrthogonality(xr,nconv,yr,nconv,B,NULL,&lev));
     151           1 :       if (lev<100*PETSC_MACHINE_EPSILON) PetscCall(PetscPrintf(PETSC_COMM_WORLD,"  Level of bi-orthogonality of eigenvectors < 100*eps\n\n"));
     152           0 :       else PetscCall(PetscPrintf(PETSC_COMM_WORLD,"  Level of bi-orthogonality of eigenvectors: %g\n\n",(double)lev));
     153             :     }
     154             :   }
     155             : 
     156           1 :   PetscCall(EPSDestroy(&eps));
     157           1 :   PetscCall(MatDestroy(&A));
     158           1 :   PetscCall(MatDestroy(&B));
     159           1 :   PetscCall(VecDestroy(&t));
     160           1 :   PetscCall(PetscFree2(kr,ki));
     161           1 :   PetscCall(VecDestroyVecs(3,&z));
     162           1 :   PetscCall(VecDestroyVecs(nconv,&xr));
     163           1 :   PetscCall(VecDestroyVecs(nconv,&xi));
     164           1 :   if (twosided) {
     165           1 :     PetscCall(VecDestroyVecs(nconv,&yr));
     166           1 :     PetscCall(VecDestroyVecs(nconv,&yi));
     167             :   }
     168           1 :   PetscCall(SlepcFinalize());
     169             :   return 0;
     170             : }
     171             : 
     172             : /*
     173             :    ComputeResidualNorm - Computes the norm of the residual vector
     174             :    associated with an eigenpair.
     175             : 
     176             :    Input Parameters:
     177             :      trans - whether A' must be used instead of A
     178             :      kr,ki - eigenvalue
     179             :      xr,xi - eigenvector
     180             :      z     - three work vectors (the second one not referenced in complex scalars)
     181             : */
     182          12 : PetscErrorCode ComputeResidualNorm(Mat A,Mat B,PetscBool trans,PetscScalar kr,PetscScalar ki,Vec xr,Vec xi,Vec *z,PetscReal *norm)
     183             : {
     184          12 :   Vec            u,w=NULL;
     185          12 :   PetscScalar    alpha;
     186             : #if !defined(PETSC_USE_COMPLEX)
     187             :   Vec            v;
     188             :   PetscReal      ni,nr;
     189             : #endif
     190          12 :   PetscErrorCode (*matmult)(Mat,Vec,Vec) = trans? MatMultHermitianTranspose: MatMult;
     191             : 
     192          12 :   PetscFunctionBegin;
     193          12 :   u = z[0];
     194          12 :   if (B) w = z[2];
     195             : 
     196             : #if !defined(PETSC_USE_COMPLEX)
     197             :   v = z[1];
     198             :   if (ki == 0 || PetscAbsScalar(ki) < PetscAbsScalar(kr*PETSC_MACHINE_EPSILON)) {
     199             : #endif
     200          12 :     PetscCall((*matmult)(A,xr,u));                          /* u=A*x */
     201          12 :     if (PetscAbsScalar(kr) > PETSC_MACHINE_EPSILON) {
     202          12 :       if (B) PetscCall((*matmult)(B,xr,w));             /* w=B*x */
     203             :       else w = xr;
     204          12 :       alpha = trans? -PetscConj(kr): -kr;
     205          12 :       PetscCall(VecAXPY(u,alpha,w));                        /* u=A*x-k*B*x */
     206             :     }
     207          12 :     PetscCall(VecNorm(u,NORM_2,norm));
     208             : #if !defined(PETSC_USE_COMPLEX)
     209             :   } else {
     210             :     PetscCall((*matmult)(A,xr,u));                          /* u=A*xr */
     211             :     if (SlepcAbsEigenvalue(kr,ki) > PETSC_MACHINE_EPSILON) {
     212             :       if (B) PetscCall((*matmult)(B,xr,v));             /* v=B*xr */
     213             :       else PetscCall(VecCopy(xr,v));
     214             :       PetscCall(VecAXPY(u,-kr,v));                          /* u=A*xr-kr*B*xr */
     215             :       if (B) PetscCall((*matmult)(B,xi,w));             /* w=B*xi */
     216             :       else w = xi;
     217             :       PetscCall(VecAXPY(u,trans?-ki:ki,w));                 /* u=A*xr-kr*B*xr+ki*B*xi */
     218             :     }
     219             :     PetscCall(VecNorm(u,NORM_2,&nr));
     220             :     PetscCall((*matmult)(A,xi,u));                          /* u=A*xi */
     221             :     if (SlepcAbsEigenvalue(kr,ki) > PETSC_MACHINE_EPSILON) {
     222             :       PetscCall(VecAXPY(u,-kr,w));                          /* u=A*xi-kr*B*xi */
     223             :       PetscCall(VecAXPY(u,trans?ki:-ki,v));                 /* u=A*xi-kr*B*xi-ki*B*xr */
     224             :     }
     225             :     PetscCall(VecNorm(u,NORM_2,&ni));
     226             :     *norm = SlepcAbsEigenvalue(nr,ni);
     227             :   }
     228             : #endif
     229          12 :   PetscFunctionReturn(PETSC_SUCCESS);
     230             : }
     231             : 
     232             : /*TEST
     233             : 
     234             :    testset:
     235             :       args: -f1 ${SLEPC_DIR}/share/slepc/datafiles/matrices/bfw62a.petsc -f2 ${SLEPC_DIR}/share/slepc/datafiles/matrices/bfw62b.petsc -eps_nev 4 -st_type sinvert -eps_target -190000
     236             :       filter: grep -v "method" | sed -e "s/[+-]0\.0*i//g" | sed -e "s/[0-9]\.[0-9]*e[+-]\([0-9]*\)/removed/g"
     237             :       requires: double !complex !defined(PETSC_USE_64BIT_INDICES)
     238             :       test:
     239             :          suffix: 1
     240             :       test:
     241             :          suffix: 1_rqi
     242             :          args: -eps_type power -eps_power_shift_type rayleigh -eps_nev 2 -eps_target -2000
     243             :       test:
     244             :          suffix: 1_rqi_singular
     245             :          args: -eps_type power -eps_power_shift_type rayleigh -eps_nev 1 -eps_target -195500
     246             : 
     247             :    test:
     248             :       suffix: 2
     249             :       args: -f1 ${DATAFILESPATH}/matrices/complex/mhd1280a.petsc -f2 ${DATAFILESPATH}/matrices/complex/mhd1280b.petsc -eps_nev 6 -eps_tol 1e-11
     250             :       filter: sed -e "s/-892/+892/" | sed -e "s/-759/+759/" | sed -e "s/-674/+674/" | sed -e "s/[0-9]\.[0-9]*e[+-]\([0-9]*\)/removed/g"
     251             :       requires: double complex datafilespath !defined(PETSC_USE_64BIT_INDICES)
     252             :       timeoutfactor: 2
     253             : 
     254             : TEST*/

Generated by: LCOV version 1.14