Line data Source code
1 : /*
2 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 : SLEPc - Scalable Library for Eigenvalue Problem Computations
4 : Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
5 :
6 : This file is part of SLEPc.
7 : SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9 : */
10 :
11 : static char help[] = "Computes the smallest nonzero eigenvalue of the Laplacian of a graph.\n\n"
12 : "This example illustrates EPSSetDeflationSpace(). The example graph corresponds to a "
13 : "2-D regular mesh. The command line options are:\n"
14 : " -n <n>, where <n> = number of grid subdivisions in x dimension.\n"
15 : " -m <m>, where <m> = number of grid subdivisions in y dimension.\n\n";
16 :
17 : #include <slepceps.h>
18 :
19 8 : int main (int argc,char **argv)
20 : {
21 8 : EPS eps; /* eigenproblem solver context */
22 8 : Mat A; /* operator matrix */
23 8 : Vec x;
24 8 : PetscInt N,n=10,m,i,j,II,Istart,Iend,nev;
25 8 : PetscScalar w;
26 8 : PetscBool flag;
27 :
28 8 : PetscFunctionBeginUser;
29 8 : PetscCall(SlepcInitialize(&argc,&argv,NULL,help));
30 :
31 8 : PetscCall(PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL));
32 8 : PetscCall(PetscOptionsGetInt(NULL,NULL,"-m",&m,&flag));
33 8 : if (!flag) m=n;
34 8 : N = n*m;
35 8 : PetscCall(PetscPrintf(PETSC_COMM_WORLD,"\nFiedler vector of a 2-D regular mesh, N=%" PetscInt_FMT " (%" PetscInt_FMT "x%" PetscInt_FMT " grid)\n\n",N,n,m));
36 :
37 : /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
38 : Compute the operator matrix that defines the eigensystem, Ax=kx
39 : In this example, A = L(G), where L is the Laplacian of graph G, i.e.
40 : Lii = degree of node i, Lij = -1 if edge (i,j) exists in G
41 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
42 :
43 8 : PetscCall(MatCreate(PETSC_COMM_WORLD,&A));
44 8 : PetscCall(MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,N,N));
45 8 : PetscCall(MatSetFromOptions(A));
46 :
47 8 : PetscCall(MatGetOwnershipRange(A,&Istart,&Iend));
48 888 : for (II=Istart;II<Iend;II++) {
49 880 : i = II/n; j = II-i*n;
50 880 : w = 0.0;
51 880 : if (i>0) { PetscCall(MatSetValue(A,II,II-n,-1.0,INSERT_VALUES)); w=w+1.0; }
52 880 : if (i<m-1) { PetscCall(MatSetValue(A,II,II+n,-1.0,INSERT_VALUES)); w=w+1.0; }
53 880 : if (j>0) { PetscCall(MatSetValue(A,II,II-1,-1.0,INSERT_VALUES)); w=w+1.0; }
54 880 : if (j<n-1) { PetscCall(MatSetValue(A,II,II+1,-1.0,INSERT_VALUES)); w=w+1.0; }
55 880 : PetscCall(MatSetValue(A,II,II,w,INSERT_VALUES));
56 : }
57 :
58 8 : PetscCall(MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY));
59 8 : PetscCall(MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY));
60 :
61 : /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
62 : Create the eigensolver and set various options
63 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
64 :
65 : /*
66 : Create eigensolver context
67 : */
68 8 : PetscCall(EPSCreate(PETSC_COMM_WORLD,&eps));
69 :
70 : /*
71 : Set operators. In this case, it is a standard eigenvalue problem
72 : */
73 8 : PetscCall(EPSSetOperators(eps,A,NULL));
74 8 : PetscCall(EPSSetProblemType(eps,EPS_HEP));
75 :
76 : /*
77 : Select portion of spectrum
78 : */
79 8 : PetscCall(EPSSetWhichEigenpairs(eps,EPS_SMALLEST_REAL));
80 :
81 : /*
82 : Set solver parameters at runtime
83 : */
84 8 : PetscCall(EPSSetFromOptions(eps));
85 :
86 : /*
87 : Attach deflation space: in this case, the matrix has a constant
88 : nullspace, [1 1 ... 1]^T is the eigenvector of the zero eigenvalue
89 : */
90 8 : PetscCall(MatCreateVecs(A,&x,NULL));
91 8 : PetscCall(VecSet(x,1.0));
92 8 : PetscCall(EPSSetDeflationSpace(eps,1,&x));
93 8 : PetscCall(VecDestroy(&x));
94 :
95 : /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
96 : Solve the eigensystem
97 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
98 :
99 8 : PetscCall(EPSSolve(eps));
100 8 : PetscCall(EPSGetDimensions(eps,&nev,NULL,NULL));
101 8 : PetscCall(PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %" PetscInt_FMT "\n",nev));
102 :
103 : /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
104 : Display solution and clean up
105 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
106 :
107 8 : PetscCall(EPSErrorView(eps,EPS_ERROR_RELATIVE,NULL));
108 8 : PetscCall(EPSDestroy(&eps));
109 8 : PetscCall(MatDestroy(&A));
110 8 : PetscCall(SlepcFinalize());
111 : return 0;
112 : }
113 :
114 : /*TEST
115 :
116 : testset:
117 : args: -eps_nev 4 -m 11 -eps_max_it 500
118 : output_file: output/test10_1.out
119 : test:
120 : suffix: 1
121 : args: -eps_type {{krylovschur arnoldi gd jd rqcg}}
122 : test:
123 : suffix: 1_lobpcg
124 : args: -eps_type lobpcg -eps_lobpcg_blocksize 6
125 : test:
126 : suffix: 1_lanczos
127 : args: -eps_type lanczos -eps_lanczos_reorthog local
128 : requires: !single
129 : test:
130 : suffix: 1_gd2
131 : args: -eps_type gd -eps_gd_double_expansion
132 :
133 : TEST*/
|