Line data Source code
1 : /*
2 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 : SLEPc - Scalable Library for Eigenvalue Problem Computations
4 : Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
5 :
6 : This file is part of SLEPc.
7 : SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9 : */
10 : /*
11 : SLEPc eigensolver: "krylovschur"
12 :
13 : Method: Krylov-Schur for symmetric-indefinite eigenproblems
14 : */
15 : #include <slepc/private/epsimpl.h>
16 : #include "krylovschur.h"
17 :
18 13 : PetscErrorCode EPSSolve_KrylovSchur_Indefinite(EPS eps)
19 : {
20 13 : EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data;
21 13 : PetscInt k,l,ld,nv,t,nconv=0;
22 13 : Mat U,D;
23 13 : Vec vomega,w=eps->work[0];
24 13 : PetscReal *a,*b,beta,beta1=1.0,*omega;
25 13 : PetscBool breakdown=PETSC_FALSE,symmlost=PETSC_FALSE;
26 :
27 13 : PetscFunctionBegin;
28 13 : PetscCall(DSGetLeadingDimension(eps->ds,&ld));
29 :
30 : /* Get the starting Lanczos vector */
31 13 : PetscCall(EPSGetStartVector(eps,0,NULL));
32 :
33 : /* Extract sigma[0] from BV, computed during normalization */
34 13 : PetscCall(DSSetDimensions(eps->ds,1,PETSC_DETERMINE,PETSC_DETERMINE));
35 13 : PetscCall(BVSetActiveColumns(eps->V,0,1));
36 13 : PetscCall(DSGetMatAndColumn(eps->ds,DS_MAT_D,0,&D,&vomega));
37 13 : PetscCall(BVGetSignature(eps->V,vomega));
38 13 : PetscCall(DSRestoreMatAndColumn(eps->ds,DS_MAT_D,0,&D,&vomega));
39 13 : l = 0;
40 :
41 : /* Restart loop */
42 13 : while (eps->reason == EPS_CONVERGED_ITERATING) {
43 61 : eps->its++;
44 :
45 : /* Compute an nv-step Lanczos factorization */
46 61 : nv = PetscMin(eps->nconv+eps->mpd,eps->ncv);
47 61 : PetscCall(DSSetDimensions(eps->ds,nv,eps->nconv,eps->nconv+l));
48 61 : PetscCall(DSGetArrayReal(eps->ds,DS_MAT_T,&a));
49 61 : b = a + ld;
50 61 : PetscCall(DSGetArrayReal(eps->ds,DS_MAT_D,&omega));
51 61 : PetscCall(EPSPseudoLanczos(eps,a,b,omega,eps->nconv+l,&nv,&breakdown,&symmlost,NULL,w));
52 61 : if (symmlost) {
53 0 : eps->reason = EPS_DIVERGED_SYMMETRY_LOST;
54 0 : if (nv==eps->nconv+l+1) { eps->nconv = nconv; break; }
55 : }
56 61 : beta = b[nv-1];
57 61 : PetscCall(DSRestoreArrayReal(eps->ds,DS_MAT_T,&a));
58 61 : PetscCall(DSRestoreArrayReal(eps->ds,DS_MAT_D,&omega));
59 61 : PetscCall(DSSetDimensions(eps->ds,nv,eps->nconv,eps->nconv+l));
60 61 : PetscCall(DSSetState(eps->ds,l?DS_STATE_RAW:DS_STATE_INTERMEDIATE));
61 61 : PetscCall(BVSetActiveColumns(eps->V,eps->nconv,nv));
62 :
63 : /* Solve projected problem */
64 61 : PetscCall(DSSolve(eps->ds,eps->eigr,eps->eigi));
65 61 : PetscCall(DSSort(eps->ds,eps->eigr,eps->eigi,NULL,NULL,NULL));
66 61 : PetscCall(DSUpdateExtraRow(eps->ds));
67 61 : PetscCall(DSSynchronize(eps->ds,eps->eigr,eps->eigi));
68 :
69 : /* Check convergence */
70 61 : PetscCall(DSGetDimensions(eps->ds,NULL,NULL,NULL,&t));
71 : #if 0
72 : /* take into account also left residual */
73 : PetscCall(BVGetColumn(eps->V,nv,&u));
74 : PetscCall(VecNorm(u,NORM_2,&beta1));
75 : PetscCall(BVRestoreColumn(eps->V,nv,&u));
76 : PetscCall(VecNorm(w,NORM_2,&beta2)); /* w contains B*V[nv] */
77 : beta1 = PetscMax(beta1,beta2);
78 : #endif
79 61 : PetscCall(EPSKrylovConvergence(eps,PETSC_FALSE,eps->nconv,t-eps->nconv,beta*beta1,0.0,1.0,&k));
80 61 : if (!symmlost) PetscCall((*eps->stopping)(eps,eps->its,eps->max_it,k,eps->nev,&eps->reason,eps->stoppingctx));
81 61 : nconv = k;
82 :
83 : /* Update l */
84 61 : if (eps->reason != EPS_CONVERGED_ITERATING || breakdown) l = 0;
85 : else {
86 48 : l = PetscMax(1,(PetscInt)((nv-k)*ctx->keep));
87 48 : l = PetscMin(l,t);
88 48 : PetscCall(DSGetTruncateSize(eps->ds,k,t,&l));
89 : }
90 61 : if (!ctx->lock && l>0) { l += k; k = 0; } /* non-locking variant: reset no. of converged pairs */
91 61 : if (l) PetscCall(PetscInfo(eps,"Preparing to restart keeping l=%" PetscInt_FMT " vectors\n",l));
92 :
93 61 : if (eps->reason == EPS_CONVERGED_ITERATING) {
94 48 : PetscCheck(!breakdown,PetscObjectComm((PetscObject)eps),PETSC_ERR_CONV_FAILED,"Breakdown in Indefinite Krylov-Schur (beta=%g)",(double)beta);
95 : /* Prepare the Rayleigh quotient for restart */
96 48 : PetscCall(DSTruncate(eps->ds,k+l,PETSC_FALSE));
97 : }
98 : /* Update the corresponding vectors V(:,idx) = V*Q(:,idx) */
99 61 : PetscCall(DSGetMat(eps->ds,DS_MAT_Q,&U));
100 61 : PetscCall(BVMultInPlace(eps->V,U,eps->nconv,k+l));
101 61 : PetscCall(DSRestoreMat(eps->ds,DS_MAT_Q,&U));
102 :
103 : /* Move restart vector and update signature */
104 61 : if (eps->reason == EPS_CONVERGED_ITERATING && !breakdown) {
105 48 : PetscCall(BVCopyColumn(eps->V,nv,k+l));
106 48 : PetscCall(BVSetActiveColumns(eps->V,0,k+l));
107 48 : PetscCall(DSGetMatAndColumn(eps->ds,DS_MAT_D,0,&D,&vomega));
108 48 : PetscCall(BVSetSignature(eps->V,vomega));
109 48 : PetscCall(DSRestoreMatAndColumn(eps->ds,DS_MAT_D,0,&D,&vomega));
110 : }
111 :
112 61 : eps->nconv = k;
113 74 : PetscCall(EPSMonitor(eps,eps->its,nconv,eps->eigr,eps->eigi,eps->errest,nv));
114 : }
115 13 : PetscCall(DSTruncate(eps->ds,eps->nconv,PETSC_TRUE));
116 13 : PetscFunctionReturn(PETSC_SUCCESS);
117 : }
|