LCOV - code coverage report
Current view: top level - eps/impls/krylov - epskrylov.c (source / functions) Hit Total Coverage
Test: SLEPc Lines: 227 235 96.6 %
Date: 2025-01-22 00:40:06 Functions: 5 5 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : /*
       2             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       3             :    SLEPc - Scalable Library for Eigenvalue Problem Computations
       4             :    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
       5             : 
       6             :    This file is part of SLEPc.
       7             :    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
       8             :    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
       9             : */
      10             : /*
      11             :    Common subroutines for all Krylov-type solvers
      12             : */
      13             : 
      14             : #include <slepc/private/epsimpl.h>
      15             : #include <slepc/private/slepcimpl.h>
      16             : #include <slepcblaslapack.h>
      17             : 
      18             : /*
      19             :    EPSDelayedArnoldi - This function is equivalent to BVMatArnoldi but
      20             :    performs the computation in a different way. The main idea is that
      21             :    reorthogonalization is delayed to the next Arnoldi step. This version is
      22             :    more scalable but in some cases convergence may stagnate.
      23             : */
      24          41 : PetscErrorCode EPSDelayedArnoldi(EPS eps,PetscScalar *H,PetscInt ldh,PetscInt k,PetscInt *M,PetscReal *beta,PetscBool *breakdown)
      25             : {
      26          41 :   PetscInt       i,j,m=*M;
      27          41 :   Vec            u,t;
      28          41 :   PetscScalar    shh[100],*lhh,dot,dot2;
      29          41 :   PetscReal      norm1=0.0,norm2=1.0;
      30          41 :   Vec            vj,vj1,vj2=NULL;
      31             : 
      32          41 :   PetscFunctionBegin;
      33          41 :   if (m<=100) lhh = shh;
      34           0 :   else PetscCall(PetscMalloc1(m,&lhh));
      35          41 :   PetscCall(BVCreateVec(eps->V,&u));
      36          41 :   PetscCall(BVCreateVec(eps->V,&t));
      37             : 
      38          41 :   PetscCall(BVSetActiveColumns(eps->V,0,m));
      39         752 :   for (j=k;j<m;j++) {
      40         711 :     PetscCall(BVGetColumn(eps->V,j,&vj));
      41         711 :     PetscCall(BVGetColumn(eps->V,j+1,&vj1));
      42         711 :     PetscCall(STApply(eps->st,vj,vj1));
      43         711 :     PetscCall(BVRestoreColumn(eps->V,j,&vj));
      44         711 :     PetscCall(BVRestoreColumn(eps->V,j+1,&vj1));
      45             : 
      46         711 :     PetscCall(BVDotColumnBegin(eps->V,j+1,H+ldh*j));
      47         711 :     if (j>k) {
      48         670 :       PetscCall(BVDotColumnBegin(eps->V,j,lhh));
      49         670 :       PetscCall(BVGetColumn(eps->V,j,&vj));
      50         670 :       PetscCall(VecDotBegin(vj,vj,&dot));
      51         670 :       if (j>k+1) {
      52         629 :         PetscCall(BVNormVecBegin(eps->V,u,NORM_2,&norm2));
      53         629 :         PetscCall(BVGetColumn(eps->V,j-2,&vj2));
      54         629 :         PetscCall(VecDotBegin(u,vj2,&dot2));
      55             :       }
      56         670 :       PetscCall(BVDotColumnEnd(eps->V,j+1,H+ldh*j));
      57         670 :       PetscCall(BVDotColumnEnd(eps->V,j,lhh));
      58         670 :       PetscCall(VecDotEnd(vj,vj,&dot));
      59         670 :       PetscCall(BVRestoreColumn(eps->V,j,&vj));
      60         670 :       if (j>k+1) {
      61         629 :         PetscCall(BVNormVecEnd(eps->V,u,NORM_2,&norm2));
      62         629 :         PetscCall(VecDotEnd(u,vj2,&dot2));
      63         629 :         PetscCall(BVRestoreColumn(eps->V,j-2,&vj2));
      64             :       }
      65         670 :       norm1 = PetscSqrtReal(PetscRealPart(dot));
      66        7278 :       for (i=0;i<j;i++) H[ldh*j+i] = H[ldh*j+i]/norm1;
      67         670 :       H[ldh*j+j] = H[ldh*j+j]/dot;
      68         670 :       PetscCall(BVCopyVec(eps->V,j,t));
      69         670 :       PetscCall(BVScaleColumn(eps->V,j,1.0/norm1));
      70         670 :       PetscCall(BVScaleColumn(eps->V,j+1,1.0/norm1));
      71          41 :     } else PetscCall(BVDotColumnEnd(eps->V,j+1,H+ldh*j)); /* j==k */
      72             : 
      73         711 :     PetscCall(BVMultColumn(eps->V,-1.0,1.0,j+1,H+ldh*j));
      74             : 
      75         711 :     if (j>k) {
      76         670 :       PetscCall(BVSetActiveColumns(eps->V,0,j));
      77         670 :       PetscCall(BVMultVec(eps->V,-1.0,1.0,t,lhh));
      78         670 :       PetscCall(BVSetActiveColumns(eps->V,0,m));
      79        7278 :       for (i=0;i<j;i++) H[ldh*(j-1)+i] += lhh[i];
      80             :     }
      81             : 
      82         711 :     if (j>k+1) {
      83         629 :       PetscCall(BVGetColumn(eps->V,j-1,&vj1));
      84         629 :       PetscCall(VecCopy(u,vj1));
      85         629 :       PetscCall(BVRestoreColumn(eps->V,j-1,&vj1));
      86         629 :       PetscCall(BVScaleColumn(eps->V,j-1,1.0/norm2));
      87         629 :       H[ldh*(j-2)+j-1] = norm2;
      88             :     }
      89             : 
      90         711 :     if (j<m-1) PetscCall(VecCopy(t,u));
      91             :   }
      92             : 
      93          41 :   PetscCall(BVNormVec(eps->V,t,NORM_2,&norm2));
      94          41 :   PetscCall(VecScale(t,1.0/norm2));
      95          41 :   PetscCall(BVGetColumn(eps->V,m-1,&vj1));
      96          41 :   PetscCall(VecCopy(t,vj1));
      97          41 :   PetscCall(BVRestoreColumn(eps->V,m-1,&vj1));
      98          41 :   H[ldh*(m-2)+m-1] = norm2;
      99             : 
     100          41 :   PetscCall(BVDotColumn(eps->V,m,lhh));
     101             : 
     102          41 :   PetscCall(BVMultColumn(eps->V,-1.0,1.0,m,lhh));
     103         802 :   for (i=0;i<m;i++)
     104         761 :     H[ldh*(m-1)+i] += lhh[i];
     105             : 
     106          41 :   PetscCall(BVNormColumn(eps->V,m,NORM_2,beta));
     107          41 :   PetscCall(BVScaleColumn(eps->V,m,1.0 / *beta));
     108          41 :   *breakdown = PETSC_FALSE;
     109             : 
     110          41 :   if (m>100) PetscCall(PetscFree(lhh));
     111          41 :   PetscCall(VecDestroy(&u));
     112          41 :   PetscCall(VecDestroy(&t));
     113          41 :   PetscFunctionReturn(PETSC_SUCCESS);
     114             : }
     115             : 
     116             : /*
     117             :    EPSDelayedArnoldi1 - This function is similar to EPSDelayedArnoldi,
     118             :    but without reorthogonalization (only delayed normalization).
     119             : */
     120          18 : PetscErrorCode EPSDelayedArnoldi1(EPS eps,PetscScalar *H,PetscInt ldh,PetscInt k,PetscInt *M,PetscReal *beta,PetscBool *breakdown)
     121             : {
     122          18 :   PetscInt       i,j,m=*M;
     123          18 :   PetscScalar    dot;
     124          18 :   PetscReal      norm=0.0;
     125          18 :   Vec            vj,vj1;
     126             : 
     127          18 :   PetscFunctionBegin;
     128          18 :   PetscCall(BVSetActiveColumns(eps->V,0,m));
     129         326 :   for (j=k;j<m;j++) {
     130         308 :     PetscCall(BVGetColumn(eps->V,j,&vj));
     131         308 :     PetscCall(BVGetColumn(eps->V,j+1,&vj1));
     132         308 :     PetscCall(STApply(eps->st,vj,vj1));
     133         308 :     PetscCall(BVRestoreColumn(eps->V,j+1,&vj1));
     134         308 :     if (j>k) {
     135         290 :       PetscCall(BVDotColumnBegin(eps->V,j+1,H+ldh*j));
     136         290 :       PetscCall(VecDotBegin(vj,vj,&dot));
     137         290 :       PetscCall(BVDotColumnEnd(eps->V,j+1,H+ldh*j));
     138         290 :       PetscCall(VecDotEnd(vj,vj,&dot));
     139         290 :       norm = PetscSqrtReal(PetscRealPart(dot));
     140         290 :       PetscCall(BVScaleColumn(eps->V,j,1.0/norm));
     141         290 :       H[ldh*(j-1)+j] = norm;
     142        3022 :       for (i=0;i<j;i++) H[ldh*j+i] = H[ldh*j+i]/norm;
     143         290 :       H[ldh*j+j] = H[ldh*j+j]/dot;
     144         290 :       PetscCall(BVScaleColumn(eps->V,j+1,1.0/norm));
     145         290 :       *beta = norm;
     146             :     } else {  /* j==k */
     147          18 :       PetscCall(BVDotColumn(eps->V,j+1,H+ldh*j));
     148             :     }
     149         308 :     PetscCall(BVRestoreColumn(eps->V,j,&vj));
     150         308 :     PetscCall(BVMultColumn(eps->V,-1.0,1.0,j+1,H+ldh*j));
     151             :   }
     152             : 
     153          18 :   *breakdown = PETSC_FALSE;
     154          18 :   PetscFunctionReturn(PETSC_SUCCESS);
     155             : }
     156             : 
     157             : /*
     158             :    EPSKrylovConvergence_Filter - Specialized version for STFILTER.
     159             : */
     160          15 : static PetscErrorCode EPSKrylovConvergence_Filter(EPS eps,PetscBool getall,PetscInt kini,PetscInt nits,PetscReal beta,PetscReal gamma,PetscInt *kout)
     161             : {
     162          15 :   PetscInt       k,ninside,nconv;
     163          15 :   PetscScalar    re,im;
     164          15 :   PetscReal      resnorm;
     165             : 
     166          15 :   PetscFunctionBegin;
     167          15 :   ninside = 0;   /* count how many eigenvalues are located in the interval */
     168         119 :   for (k=kini;k<kini+nits;k++) {
     169         119 :     if (PetscRealPart(eps->eigr[k]) < gamma) break;
     170         104 :     ninside++;
     171             :   }
     172          15 :   eps->nev = ninside+kini;  /* adjust eigenvalue count */
     173          15 :   nconv = 0;   /* count how many eigenvalues satisfy the convergence criterion */
     174          78 :   for (k=kini;k<kini+ninside;k++) {
     175             :     /* eigenvalue */
     176          70 :     re = eps->eigr[k];
     177          70 :     im = eps->eigi[k];
     178          70 :     PetscCall(DSVectors(eps->ds,DS_MAT_X,&k,&resnorm));
     179          70 :     resnorm *= beta;
     180             :     /* error estimate */
     181          70 :     PetscCall((*eps->converged)(eps,re,im,resnorm,&eps->errest[k],eps->convergedctx));
     182          70 :     if (eps->errest[k] < eps->tol) nconv++;
     183             :     else break;
     184             :   }
     185          15 :   *kout = kini+nconv;
     186          15 :   PetscCall(PetscInfo(eps,"Found %" PetscInt_FMT " eigenvalue approximations inside the interval (gamma=%g), k=%" PetscInt_FMT " nconv=%" PetscInt_FMT "\n",ninside,(double)gamma,k,nconv));
     187          15 :   PetscFunctionReturn(PETSC_SUCCESS);
     188             : }
     189             : 
     190             : /*
     191             :    EPSKrylovConvergence - Implements the loop that checks for convergence
     192             :    in Krylov methods.
     193             : 
     194             :    Input Parameters:
     195             :      eps   - the eigensolver; some error estimates are updated in eps->errest
     196             :      getall - whether all residuals must be computed
     197             :      kini  - initial value of k (the loop variable)
     198             :      nits  - number of iterations of the loop
     199             :      V     - set of basis vectors (used only if trueresidual is activated)
     200             :      nv    - number of vectors to process (dimension of Q, columns of V)
     201             :      beta  - norm of f (the residual vector of the Arnoldi/Lanczos factorization)
     202             :      corrf - correction factor for residual estimates (only in harmonic KS)
     203             : 
     204             :    Output Parameters:
     205             :      kout  - the first index where the convergence test failed
     206             : */
     207        3906 : PetscErrorCode EPSKrylovConvergence(EPS eps,PetscBool getall,PetscInt kini,PetscInt nits,PetscReal beta,PetscReal betat,PetscReal corrf,PetscInt *kout)
     208             : {
     209        3906 :   PetscInt       k,newk,newk2,marker,ld,inside;
     210        3906 :   PetscScalar    re,im,*Zr,*Zi,*X;
     211        3906 :   PetscReal      resnorm,gamma,lerrest;
     212        3906 :   PetscBool      isshift,isfilter,refined,istrivial;
     213        3906 :   Vec            x=NULL,y=NULL,w[3];
     214             : 
     215        3906 :   PetscFunctionBegin;
     216        3906 :   if (PetscUnlikely(eps->which == EPS_ALL)) {
     217          93 :     PetscCall(PetscObjectTypeCompare((PetscObject)eps->st,STFILTER,&isfilter));
     218          93 :     if (isfilter) {
     219          15 :       PetscCall(STFilterGetThreshold(eps->st,&gamma));
     220          15 :       PetscCall(EPSKrylovConvergence_Filter(eps,getall,kini,nits,beta,gamma,kout));
     221          15 :       PetscFunctionReturn(PETSC_SUCCESS);
     222             :     }
     223             :   }
     224        3891 :   PetscCall(RGIsTrivial(eps->rg,&istrivial));
     225        3891 :   if (PetscUnlikely(eps->trueres)) {
     226          36 :     PetscCall(BVCreateVec(eps->V,&x));
     227          36 :     PetscCall(BVCreateVec(eps->V,&y));
     228          36 :     PetscCall(BVCreateVec(eps->V,&w[0]));
     229          36 :     PetscCall(BVCreateVec(eps->V,&w[2]));
     230             : #if !defined(PETSC_USE_COMPLEX)
     231             :     PetscCall(BVCreateVec(eps->V,&w[1]));
     232             : #else
     233          36 :     w[1] = NULL;
     234             : #endif
     235             :   }
     236        3891 :   PetscCall(DSGetLeadingDimension(eps->ds,&ld));
     237        3891 :   PetscCall(DSGetRefined(eps->ds,&refined));
     238        3891 :   PetscCall(PetscObjectTypeCompare((PetscObject)eps->st,STSHIFT,&isshift));
     239        3891 :   marker = -1;
     240        3891 :   if (eps->trackall) getall = PETSC_TRUE;
     241       12655 :   for (k=kini;k<kini+nits;k++) {
     242             :     /* eigenvalue */
     243       12525 :     re = eps->eigr[k];
     244       12525 :     im = eps->eigi[k];
     245       12525 :     if (!istrivial || eps->trueres || isshift || eps->conv==EPS_CONV_NORM) PetscCall(STBackTransform(eps->st,1,&re,&im));
     246       12525 :     if (PetscUnlikely(!istrivial)) {
     247         121 :       PetscCall(RGCheckInside(eps->rg,1,&re,&im,&inside));
     248         121 :       if (marker==-1 && inside<0) marker = k;
     249         121 :       if (!(eps->trueres || isshift || eps->conv==EPS_CONV_NORM)) {  /* make sure eps->converged below uses the right value */
     250          43 :         re = eps->eigr[k];
     251          43 :         im = eps->eigi[k];
     252             :       }
     253             :     }
     254       12525 :     newk = k;
     255       12525 :     PetscCall(DSVectors(eps->ds,DS_MAT_X,&newk,&resnorm));
     256       12525 :     if (PetscUnlikely(eps->trueres)) {
     257          55 :       PetscCall(DSGetArray(eps->ds,DS_MAT_X,&X));
     258          55 :       Zr = X+k*ld;
     259          55 :       if (newk==k+1) Zi = X+newk*ld;
     260             :       else Zi = NULL;
     261          55 :       PetscCall(EPSComputeRitzVector(eps,Zr,Zi,eps->V,x,y));
     262          55 :       PetscCall(DSRestoreArray(eps->ds,DS_MAT_X,&X));
     263          55 :       PetscCall(EPSComputeResidualNorm_Private(eps,PETSC_FALSE,re,im,x,y,w,&resnorm));
     264             :     }
     265       12470 :     else if (!refined) resnorm *= beta*corrf;
     266             :     /* error estimate */
     267       12525 :     PetscCall((*eps->converged)(eps,re,im,resnorm,&eps->errest[k],eps->convergedctx));
     268       12525 :     if (marker==-1 && eps->errest[k] >= eps->tol) marker = k;
     269       12525 :     if (PetscUnlikely(eps->twosided)) {
     270         161 :       newk2 = k;
     271         161 :       PetscCall(DSVectors(eps->ds,DS_MAT_Y,&newk2,&resnorm));
     272         161 :       resnorm *= betat;
     273         161 :       PetscCall((*eps->converged)(eps,re,im,resnorm,&lerrest,eps->convergedctx));
     274         161 :       eps->errest[k] = PetscMax(eps->errest[k],lerrest);
     275         161 :       if (marker==-1 && lerrest >= eps->tol) marker = k;
     276             :     }
     277       12525 :     if (PetscUnlikely(newk==k+1)) {
     278           9 :       eps->errest[k+1] = eps->errest[k];
     279           9 :       k++;
     280             :     }
     281       12525 :     if (marker!=-1 && !getall) break;
     282             :   }
     283        3891 :   if (marker!=-1) k = marker;
     284        3891 :   *kout = k;
     285        3891 :   if (PetscUnlikely(eps->trueres)) {
     286          36 :     PetscCall(VecDestroy(&x));
     287          36 :     PetscCall(VecDestroy(&y));
     288          36 :     PetscCall(VecDestroy(&w[0]));
     289          36 :     PetscCall(VecDestroy(&w[2]));
     290             : #if !defined(PETSC_USE_COMPLEX)
     291             :     PetscCall(VecDestroy(&w[1]));
     292             : #endif
     293             :   }
     294        3891 :   PetscFunctionReturn(PETSC_SUCCESS);
     295             : }
     296             : 
     297          61 : PetscErrorCode EPSPseudoLanczos(EPS eps,PetscReal *alpha,PetscReal *beta,PetscReal *omega,PetscInt k,PetscInt *M,PetscBool *breakdown,PetscBool *symmlost,PetscReal *cos,Vec w)
     298             : {
     299          61 :   PetscInt       j,m = *M,i,ld,l;
     300          61 :   Vec            vj,vj1;
     301          61 :   PetscScalar    *hwork,lhwork[100];
     302          61 :   PetscReal      norm,norm1,norm2,t,sym=0.0,fro=0.0;
     303          61 :   PetscBLASInt   j_,one=1;
     304             : 
     305          61 :   PetscFunctionBegin;
     306          61 :   PetscCall(DSGetLeadingDimension(eps->ds,&ld));
     307          61 :   PetscCall(DSGetDimensions(eps->ds,NULL,&l,NULL,NULL));
     308          61 :   if (cos) *cos = 1.0;
     309          61 :   if (m > 100) PetscCall(PetscMalloc1(m,&hwork));
     310          53 :   else hwork = lhwork;
     311             : 
     312          61 :   PetscCall(BVSetActiveColumns(eps->V,0,m));
     313        2028 :   for (j=k;j<m;j++) {
     314        1967 :     PetscCall(BVGetColumn(eps->V,j,&vj));
     315        1967 :     PetscCall(BVGetColumn(eps->V,j+1,&vj1));
     316        1967 :     PetscCall(STApply(eps->st,vj,vj1));
     317        1967 :     PetscCall(BVRestoreColumn(eps->V,j,&vj));
     318        1967 :     PetscCall(BVRestoreColumn(eps->V,j+1,&vj1));
     319        1967 :     PetscCall(BVOrthogonalizeColumn(eps->V,j+1,hwork,&norm,breakdown));
     320        1967 :     alpha[j] = PetscRealPart(hwork[j]);
     321        1967 :     beta[j] = PetscAbsReal(norm);
     322        1967 :     if (j==k) {
     323          61 :       PetscReal *f;
     324             : 
     325          61 :       PetscCall(DSGetArrayReal(eps->ds,DS_MAT_T,&f));
     326         528 :       for (i=0;i<l;i++) hwork[i]  = 0.0;
     327        1025 :       for (;i<j-1;i++)  hwork[i] -= f[2*ld+i];
     328          61 :       PetscCall(DSRestoreArrayReal(eps->ds,DS_MAT_T,&f));
     329             :     }
     330        1967 :     if (j>0) {
     331        1954 :       hwork[j-1] -= beta[j-1];
     332        1954 :       PetscCall(PetscBLASIntCast(j,&j_));
     333        1954 :       sym = SlepcAbs(BLASnrm2_(&j_,hwork,&one),sym);
     334             :     }
     335        1967 :     fro = SlepcAbs(fro,SlepcAbs(alpha[j],beta[j]));
     336        1967 :     if (j>0) fro = SlepcAbs(fro,beta[j-1]);
     337        2039 :     if (sym/fro>PetscMax(PETSC_SQRT_MACHINE_EPSILON,10*eps->tol)) { *symmlost = PETSC_TRUE; *M=j; break; }
     338        1967 :     omega[j+1] = (norm<0.0)? -1.0: 1.0;
     339        1967 :     PetscCall(BVScaleColumn(eps->V,j+1,1.0/norm));
     340             :     /* */
     341        1967 :     if (cos) {
     342           0 :       PetscCall(BVGetColumn(eps->V,j+1,&vj1));
     343           0 :       PetscCall(VecNorm(vj1,NORM_2,&norm1));
     344           0 :       PetscCall(BVApplyMatrix(eps->V,vj1,w));
     345           0 :       PetscCall(BVRestoreColumn(eps->V,j+1,&vj1));
     346           0 :       PetscCall(VecNorm(w,NORM_2,&norm2));
     347           0 :       t = 1.0/(norm1*norm2);
     348           0 :       if (*cos>t) *cos = t;
     349             :     }
     350             :   }
     351          61 :   if (m > 100) PetscCall(PetscFree(hwork));
     352          61 :   PetscFunctionReturn(PETSC_SUCCESS);
     353             : }

Generated by: LCOV version 1.14