Line data Source code
1 : /*
2 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 : SLEPc - Scalable Library for Eigenvalue Problem Computations
4 : Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
5 :
6 : This file is part of SLEPc.
7 : SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8 : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9 : */
10 : /*
11 : SLEPc eigensolver: "davidson"
12 :
13 : Step: improve the eigenvectors X with GD2
14 : */
15 :
16 : #include "davidson.h"
17 :
18 : typedef struct {
19 : PetscInt size_X;
20 : } dvdImprovex_gd2;
21 :
22 17 : static PetscErrorCode dvd_improvex_gd2_d(dvdDashboard *d)
23 : {
24 17 : dvdImprovex_gd2 *data = (dvdImprovex_gd2*)d->improveX_data;
25 :
26 17 : PetscFunctionBegin;
27 : /* Free local data and objects */
28 17 : PetscCall(PetscFree(data));
29 17 : PetscFunctionReturn(PETSC_SUCCESS);
30 : }
31 :
32 2502 : static PetscErrorCode dvd_improvex_gd2_gen(dvdDashboard *d,PetscInt r_s,PetscInt r_e,PetscInt *size_D)
33 : {
34 2502 : dvdImprovex_gd2 *data = (dvdImprovex_gd2*)d->improveX_data;
35 2502 : PetscInt i,j,n,s,ld,lv,kv,max_size_D;
36 2502 : PetscInt oldnpreconv = d->npreconv;
37 2502 : PetscScalar *pX,*b;
38 2502 : Vec *Ax,*Bx,v,*x;
39 2502 : Mat M;
40 2502 : BV X;
41 :
42 2502 : PetscFunctionBegin;
43 : /* Compute the number of pairs to improve */
44 2502 : PetscCall(BVGetActiveColumns(d->eps->V,&lv,&kv));
45 2502 : max_size_D = d->eps->ncv-kv;
46 2502 : n = PetscMin(PetscMin(data->size_X*2,max_size_D),(r_e-r_s)*2)/2;
47 :
48 : /* Quick exit */
49 2502 : if (max_size_D == 0 || r_e-r_s <= 0 || n == 0) {
50 0 : *size_D = 0;
51 0 : PetscFunctionReturn(PETSC_SUCCESS);
52 : }
53 :
54 2502 : PetscCall(BVDuplicateResize(d->eps->V,4,&X));
55 2502 : PetscCall(MatCreateSeqDense(PETSC_COMM_SELF,4,2,NULL,&M));
56 :
57 : /* Compute the eigenvectors of the selected pairs */
58 5004 : for (i=r_s;i<r_s+n; i++) PetscCall(DSVectors(d->eps->ds,DS_MAT_X,&i,NULL));
59 2502 : PetscCall(DSGetArray(d->eps->ds,DS_MAT_X,&pX));
60 2502 : PetscCall(DSGetLeadingDimension(d->eps->ds,&ld));
61 :
62 2502 : PetscCall(SlepcVecPoolGetVecs(d->auxV,n,&Ax));
63 2502 : PetscCall(SlepcVecPoolGetVecs(d->auxV,n,&Bx));
64 :
65 : /* Bx <- B*X(i) */
66 2502 : if (d->BX) {
67 : /* Compute the norms of the eigenvectors */
68 148 : if (d->correctXnorm) PetscCall(dvd_improvex_compute_X(d,r_s,r_s+n,Bx,pX,ld));
69 : else {
70 0 : for (i=0;i<n;i++) d->nX[r_s+i] = 1.0;
71 : }
72 296 : for (i=0;i<n;i++) PetscCall(BVMultVec(d->BX,1.0,0.0,Bx[i],&pX[ld*(r_s+i)]));
73 2354 : } else if (d->B) {
74 0 : PetscCall(SlepcVecPoolGetVecs(d->auxV,1,&x));
75 0 : for (i=0;i<n;i++) {
76 : /* auxV(0) <- X(i) */
77 0 : PetscCall(dvd_improvex_compute_X(d,r_s+i,r_s+i+1,x,pX,ld));
78 : /* Bx(i) <- B*auxV(0) */
79 0 : PetscCall(MatMult(d->B,x[0],Bx[i]));
80 : }
81 0 : PetscCall(SlepcVecPoolRestoreVecs(d->auxV,1,&x));
82 : } else {
83 : /* Bx <- X */
84 2354 : PetscCall(dvd_improvex_compute_X(d,r_s,r_s+n,Bx,pX,ld));
85 : }
86 :
87 : /* Ax <- A*X(i) */
88 5004 : for (i=0;i<n;i++) PetscCall(BVMultVec(d->AX,1.0,0.0,Ax[i],&pX[ld*(i+r_s)]));
89 :
90 2502 : PetscCall(DSRestoreArray(d->eps->ds,DS_MAT_X,&pX));
91 :
92 4949 : for (i=0;i<n;i+=s) {
93 : #if !defined(PETSC_USE_COMPLEX)
94 : if (d->eigi[r_s+i] != 0.0 && i+2<=n) {
95 : /* [Ax_i Ax_i+1 Bx_i Bx_i+1]*= [ 1 0
96 : 0 1
97 : -eigr_i -eigi_i
98 : eigi_i -eigr_i] */
99 : PetscCall(MatDenseGetArrayWrite(M,&b));
100 : b[0] = b[5] = 1.0/d->nX[r_s+i];
101 : b[2] = b[7] = -d->eigr[r_s+i]/d->nX[r_s+i];
102 : b[6] = -(b[3] = d->eigi[r_s+i]/d->nX[r_s+i]);
103 : b[1] = b[4] = 0.0;
104 : PetscCall(MatDenseRestoreArrayWrite(M,&b));
105 : PetscCall(BVInsertVec(X,0,Ax[i]));
106 : PetscCall(BVInsertVec(X,1,Ax[i+1]));
107 : PetscCall(BVInsertVec(X,2,Bx[i]));
108 : PetscCall(BVInsertVec(X,3,Bx[i+1]));
109 : PetscCall(BVSetActiveColumns(X,0,4));
110 : PetscCall(BVMultInPlace(X,M,0,2));
111 : PetscCall(BVCopyVec(X,0,Ax[i]));
112 : PetscCall(BVCopyVec(X,1,Ax[i+1]));
113 : s = 2;
114 : } else
115 : #endif
116 : {
117 : /* [Ax_i Bx_i]*= [ 1/nX_i conj(eig_i/nX_i)
118 : -eig_i/nX_i 1/nX_i ] */
119 2502 : PetscCall(MatDenseGetArrayWrite(M,&b));
120 2502 : b[0] = 1.0/d->nX[r_s+i];
121 2502 : b[1] = -d->eigr[r_s+i]/d->nX[r_s+i];
122 2502 : b[4] = PetscConj(d->eigr[r_s+i]/d->nX[r_s+i]);
123 2502 : b[5] = 1.0/d->nX[r_s+i];
124 2502 : PetscCall(MatDenseRestoreArrayWrite(M,&b));
125 2502 : PetscCall(BVInsertVec(X,0,Ax[i]));
126 2502 : PetscCall(BVInsertVec(X,1,Bx[i]));
127 2502 : PetscCall(BVSetActiveColumns(X,0,2));
128 2502 : PetscCall(BVMultInPlace(X,M,0,2));
129 2502 : PetscCall(BVCopyVec(X,0,Ax[i]));
130 2502 : PetscCall(BVCopyVec(X,1,Bx[i]));
131 5004 : s = 1;
132 : }
133 5004 : for (j=0;j<s;j++) d->nX[r_s+i+j] = 1.0;
134 :
135 : /* Ax = R <- P*(Ax - eig_i*Bx) */
136 2502 : PetscCall(d->calcpairs_proj_res(d,r_s+i,r_s+i+s,&Ax[i]));
137 :
138 : /* Check if the first eigenpairs are converged */
139 2502 : if (i == 0) {
140 2502 : PetscCall(d->preTestConv(d,0,r_s+s,r_s+s,&d->npreconv));
141 2502 : if (d->npreconv > oldnpreconv) break;
142 : }
143 : }
144 :
145 : /* D <- K*[Ax Bx] */
146 2502 : if (d->npreconv <= oldnpreconv) {
147 4894 : for (i=0;i<n;i++) {
148 2447 : PetscCall(BVGetColumn(d->eps->V,kv+i,&v));
149 2447 : PetscCall(d->improvex_precond(d,r_s+i,Ax[i],v));
150 2447 : PetscCall(BVRestoreColumn(d->eps->V,kv+i,&v));
151 : }
152 4894 : for (i=n;i<n*2;i++) {
153 2447 : PetscCall(BVGetColumn(d->eps->V,kv+i,&v));
154 2447 : PetscCall(d->improvex_precond(d,r_s+i-n,Bx[i-n],v));
155 2447 : PetscCall(BVRestoreColumn(d->eps->V,kv+i,&v));
156 : }
157 2447 : *size_D = 2*n;
158 : #if !defined(PETSC_USE_COMPLEX)
159 : if (d->eigi[r_s] != 0.0) {
160 : s = 4;
161 : } else
162 : #endif
163 : {
164 2447 : s = 2;
165 : }
166 : /* Prevent that short vectors are discarded in the orthogonalization */
167 7341 : for (i=0; i<s && i<*size_D; i++) {
168 4894 : if (d->eps->errest[d->nconv+r_s+i] > PETSC_MACHINE_EPSILON && d->eps->errest[d->nconv+r_s+i] < PETSC_MAX_REAL) PetscCall(BVScaleColumn(d->eps->V,i+kv,1.0/d->eps->errest[d->nconv+r_s+i]));
169 : }
170 55 : } else *size_D = 0;
171 :
172 2502 : PetscCall(SlepcVecPoolRestoreVecs(d->auxV,n,&Bx));
173 2502 : PetscCall(SlepcVecPoolRestoreVecs(d->auxV,n,&Ax));
174 2502 : PetscCall(BVDestroy(&X));
175 2502 : PetscCall(MatDestroy(&M));
176 2502 : PetscFunctionReturn(PETSC_SUCCESS);
177 : }
178 :
179 51 : PetscErrorCode dvd_improvex_gd2(dvdDashboard *d,dvdBlackboard *b,KSP ksp,PetscInt max_bs)
180 : {
181 51 : dvdImprovex_gd2 *data;
182 51 : PC pc;
183 :
184 51 : PetscFunctionBegin;
185 : /* Setting configuration constrains */
186 : /* If the arithmetic is real and the problem is not Hermitian, then
187 : the block size is incremented in one */
188 : #if !defined(PETSC_USE_COMPLEX)
189 : if (!DVD_IS(d->sEP, DVD_EP_HERMITIAN)) {
190 : max_bs++;
191 : b->max_size_P = PetscMax(b->max_size_P,2);
192 : } else
193 : #endif
194 : {
195 51 : b->max_size_P = PetscMax(b->max_size_P,1);
196 : }
197 51 : b->max_size_X = PetscMax(b->max_size_X,max_bs);
198 :
199 : /* Setup the preconditioner */
200 51 : if (ksp) {
201 51 : PetscCall(KSPGetPC(ksp,&pc));
202 51 : PetscCall(dvd_static_precond_PC(d,b,pc));
203 0 : } else PetscCall(dvd_static_precond_PC(d,b,NULL));
204 :
205 : /* Setup the step */
206 51 : if (b->state >= DVD_STATE_CONF) {
207 17 : PetscCall(PetscNew(&data));
208 17 : d->improveX_data = data;
209 17 : data->size_X = b->max_size_X;
210 17 : d->improveX = dvd_improvex_gd2_gen;
211 :
212 17 : PetscCall(EPSDavidsonFLAdd(&d->destroyList,dvd_improvex_gd2_d));
213 : }
214 51 : PetscFunctionReturn(PETSC_SUCCESS);
215 : }
|