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Abstract

This document describes SLEPc, the Scalable Library for Eigenvalue Problem Computations, a
software package for the solution of large sparse eigenproblems on parallel computers. It can
be used for the solution of problems formulated in either standard or generalized form, as well
as other related problems such as the singular value decomposition (SVD) or the quadratic
eigenvalue problem (QEP). SLEPc is a general library in the sense that it covers both Hermitian
and non-Hermitian problems, with either real or complex arithmetic.

The emphasis of the software is on methods and techniques appropriate for problems in which
the associated matrices are large and sparse, for example, those arising after the discretization
of partial differential equations. Thus, most of the methods offered by the library are projection
methods, including different variants of Krylov and Davidson iterations. In addition to its own
solvers, SLEPc provides transparent access to some external software packages such as ARPACK.
These packages are optional and their installation is not required to use SLEPc, see §6.6 for
details. Apart from eigensolvers, SVD and QEP solvers, SLEPc also provides built-in support
for spectral transformations such as shift-and-invert.

SLEPc is built on top of PETSc, the Portable, Extensible Toolkit for Scientific Computation
[Balay et al., 2011]. It can be considered an extension of PETSc providing all the functionality
necessary for the solution of eigenvalue problems. This means that PETSc must be previously
installed in order to use SLEPc. PETSc users will find SLEPc very easy to use, since it enforces
the same programming paradigm. Those readers that are not acquainted with PETSc are highly
recommended to familiarize with it before proceeding with SLEPc.

How to Get SLEPC

All the information related to SLEPc can be found at the following web site:
http://www.grycap.upv.es/slepc.

The distribution file is available for download at this site. Other information is provided there,
such as installation instructions and contact information. Instructions for installing the software
can also be found in §1.2.

PETSc can be downloaded from http://www.mcs.anl.gov/petsc. PETSc is supported, and
information on contacting support can be found at that site.

Additional Documentation

This manual provides a general description of SLEPc. In addition, manual pages for individual
routines are included in the distribution file in hypertext format, and are also available on-line at
http://www.grycap.upv.es/slepc/documentation. These manual pages provide hyperlinked
access to the source code and enable easy movement among related topics. Finally, there are
also several hands-on exercises available, which are intended for learning the basic concepts
easily.


http://www.grycap.upv.es/slepc
http://www.mcs.anl.gov/petsc
http://www.grycap.upv.es/slepc/documentation

How to Read this Manual

Users that are already familiar with PETSc can read chapter 1 very fast. Section 2.1 provides
a brief overview of eigenproblems and the general concepts used by eigensolvers, so it can be
skipped by experienced users. Chapters 2—5 describe the main SLEPc functionality, and include
an advanced usage section that can be skipped at a first reading. Finally, chapter 6 contains
less important, additional information.

What’s New
The major changes in the Users Manual with respect to the previous version are:

e A new subsection 3.4.5 describes the new functionality related to the computation of all
eigenvalues in a given interval.

e Two new sections have been added to chapter 6, describing ongoing work to support GPU
computing §6.3 and the Matlab interface §6.8.

sLEPc Technical Reports

The information contained in this manual is complemented by a set of Technical Reports, which
provide technical details that normal users typically do not need to know but may be useful
for experts in order to identify the particular method implemented in SLEPc. These reports are
not included in the SLEPc distribution file but can be accessed via the SLEPc web site. A list of
available reports is included at the end of the Bibliography.
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CHAPTER ]_

Getting Started

SLEPc, the Scalable Library for Eigenvalue Problem Computations, is a software library for the
solution of large sparse eigenvalue problems on parallel computers.

Together with linear systems of equations, eigenvalue problems are a very important class
of linear algebra problems. The need for the numerical solution of these problems arises in
many situations in science and engineering, in problems associated with stability and vibration
analysis in practical applications. These are usually formulated as large sparse eigenproblems.

Computing eigenvalues is essentially more difficult than solving linear systems of equations.
This has resulted in a very active research activity in the area of computational methods for
eigenvalue problems in the last years, with many remarkable achievements. However, these
state-of-the-art methods and algorithms are not easily transferred to the scientific community,
and, apart from a few exceptions, most user still rely on simpler, well-established techniques.

The reasons for this situation are diverse. First, new methods are increasingly complex and
difficult to implement and therefore robust implementations must be provided by computational
specialists, for example as software libraries. The development of such libraries requires to invest
a lot of effort but sometimes they do not reach normal users due to a lack of awareness.

In the case of eigenproblems, using libraries is not straightforward. It is usually recom-
mended that the user understands how the underlying algorithm works and typically the prob-
lem is successfully solved only after several cycles of testing and parameter tuning. Methods are
often specific for a certain class of eigenproblems (e.g., complex symmetric) and this leads to an
explosion of available algorithms from which the user has to choose. Not all these algorithms
are available in the form of software libraries, even less frequently with parallel capabilities.

Another difficulty resides in how to represent the operator matrix. Unlike in dense methods,
there is no widely accepted standard for basic sparse operations in the spirit of BLAS. This is due
to the fact that sparse storage is more complicated, admitting of more variation, and therefore
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less standardized. For this reason, sparse libraries have an added level of complexity. This
holds even more so in the case of parallel distributed-memory programming, where the data of
the problem have to be distributed across the available processors.

The first implementations of algorithms for sparse matrices required a prescribed storage
format for the sparse matrix, which is an obvious limitation. An alternative way of matrix rep-
resentation is by means of a user-provided subroutine for the matrix-vector product. Apart from
being format-independent, this approach allows the solution of problems in which the matrix
is not available explicitly. The drawback is the restriction to a fixed-prototype subroutine.

A better solution for the matrix representation problem is the well-known reverse commu-
nication interface, a technique that allows the development of iterative methods disregarding
the implementation details of various operations. Whenever the iterative method subroutine
needs the results of one of the operations, it returns control to the user’s subroutine that called
it. The user’s subroutine then invokes the module that performs the operation. The iterative
method subroutine is invoked again with the results of the operation.

Several libraries with any of the interface schemes mentioned above are publicly available.
For a survey of such software see the SLEPc Technical Report [STR-6], “A Survey of Software
for Sparse Eigenvalue Problems”, and references therein. Some of the most recent libraries are
even prepared for parallel execution (some of them can be used from within SLEPc, see §6.6).
However, they still lack some flexibility or require too much programming effort from the user,
especially in the case that the eigensolution requires to employ advanced techniques such as
spectral transformations or preconditioning.

A further obstacle appears when these libraries have to be used in the context of large
software projects carried out by inter-disciplinary teams. In this scenery, libraries must be able
to interoperate with already existing software and with other libraries. In order to cope with
the complexity associated with such projects, libraries must be designed carefully in order to
overcome hurdles such as different storage formats or programming languages. In the case of
parallel software, care must be taken also to achieve portability to a wide range of platforms
with good performance and still retain flexibility and usability.

1.1 SLEPc and PETSc

The SLEPc library is an attempt to provide a solution to the situation described in the previous
paragraphs. It is intended to be a general library for the solution of eigenvalue problems that
arise in different contexts, covering standard and generalized problems, both Hermitian and non-
Hermitian, with either real or complex arithmetic. Issues such as usability, portability, efficiency
and interoperability are addressed, and special emphasis is put on flexibility, providing data-
structure neutral implementations and multitude of run-time options. SLEPc offers a growing
number of eigensolvers as well as interfaces to integrate well-established eigenvalue packages such
as ARPACK. In addition, specific modules for SVD computation and quadratic eigenproblems
are included as well.

SLEPc is based on PETSc, the Portable, Extensible Toolkit for Scientific Computation [Balay
et al., 2011], and, therefore, a large percentage of the software complexity is avoided since many
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PETSc developments are leveraged, including matrix storage formats and linear solvers, to name
a few. SLEPc focuses on high level features for eigenproblems, structured around a few object
types as described below.

PETSc uses modern programming paradigms to ease the development of large-scale scientific
application codes in Fortran, C, and C++ and provides a powerful set of tools for the numerical
solution of partial differential equations and related problems on high-performance computers.
Its approach is to encapsulate mathematical algorithms using object-oriented programming
techniques, which allow to manage the complexity of efficient numerical message-passing codes.
All the PETSc software is free and used around the world in a variety of application areas.

The design philosophy is not to try to completely conceal parallelism from the application
programmer. Rather, the user initiates a combination of sequential and parallel phases of com-
putations, but the library handles the detailed message passing required during the coordination
of computations. Some of the design principles are described in [Balay et al., 1997].

PETSc is built around a variety of data structures and algorithmic objects. The application
programmer works directly with these objects rather than concentrating on the underlying data
structures. Each component manipulates a particular family of objects (for instance, vectors)
and the operations one would like to perform on the objects. The three basic abstract data
objects are index sets, vectors and matrices. Built on top of this foundation are various classes of
solver objects, which encapsulate virtually all information regarding the solution procedure for
a particular class of problems, including the local state and various options such as convergence
tolerances, etc.

SLEPc can be considered an extension of PETSc providing all the functionality necessary for
the solution of eigenvalue problems. Figure 1.1 shows a diagram of all the different objects
included in PETSc (on the left) and those added by SLEPc (on the right). PETSc is a prerequisite
for sLEPc and users should be familiar with basic concepts such as vectors and matrices in
order to use SLEPc. Therefore, together with this manual we recommend to use the PETSc
Users Manual [Balay et al., 2011].

Each of these components consists of an abstract interface (simply a set of calling sequences)
and one or more implementations using particular data structures. Both PETSc and SLEPc are
written in C, which lacks direct support for object-oriented programming. However, it is still
possible to take advantage of the three basic principles of object-oriented programming to
manage the complexity of such a large package. PETSc uses data encapsulation in both vector
and matrix data objects. Application code accesses data through function calls. Also, all the
operations are supported through polymorphism. The user calls a generic interface routine,
which then selects the underlying routine that handles the particular data structure. Finally,
PETSc also uses inheritance in its design. All the objects are derived from an abstract base
object. From this fundamental object, an abstract base object is defined for each PETSc object
(Mat, Vec and so on), which in turn has a variety of instantiations that, for example, implement
different matrix storage formats.

PETSc/SLEPc provide clean and effective codes for the various phases of solving PDEs, with
a uniform approach for each class of problems. This design enables easy comparison and use of
different algorithms (for example, to experiment with different Krylov subspace methods, pre-
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Figure 1.1: Numerical components of PETSc and SLEPC.

conditioners, or eigensolvers). Hence, PETSc, together with SLEPc, provide a rich environment
for modeling scientific applications as well as for rapid algorithm design and prototyping.

Options can be specified by means of calls to subroutines in the source code and also as
command-line arguments. Runtime options allow the user to test different tolerances, for exam-
ple, without having to recompile the program. Also, since PETSc provides a uniform interface
to all of its linear solvers —the Conjugate Gradient, GMRES, etc.— and a large family of
preconditioners —block Jacobi, overlapping additive Schwarz, etc.—, one can compare several
combinations of method and preconditioner by simply specifying them at execution time. SLEPc
shares this good property.

The components enable easy customization and extension of both algorithms and imple-
mentations. This approach promotes code reuse and flexibility, and separates the issues of
parallelism from the choice of algorithms. The PETSc infrastructure creates a foundation for
building large-scale applications.

1.2 Installation

This section describes SLEPc’s installation procedure. Previously to the installation of SLEPc,
the system must have an appropriate version of PETSc installed. Table 1.1 shows a list of SLEPc
versions and their corresponding PETSc versions. SLEPc versions marked as major releases are
those which incorporate some new functionality. The rest are just adaptations required for a
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SLEPc version  PETSc versions  Major Release date

2.1.0 2.1.0 * Not released
2.1.1 2.1.1,2.1.2, 2.1.3 Dec 2002
2.1.5 2.1.5,2.1.6 May 2003
2.2.0 2.2.0 * Apr 2004
2.2.1 2.2.1 * Aug 2004
2.3.0 2.3.0 * Jun 2005
2.3.1 2.3.1 Mar 2006
2.3.2 2.3.1, 2.3.2 * Oct 2006
2.3.3 2.3.3 * Jun 2007
3.0.0 3.0.0 * Feb 2009
3.1 3.1 * Aug 2010
3.2 3.2 * Oct 2011

Table 1.1: Correspondence between SLEPc and PETSc releases.

new PETSc release and may also include bug fixes.

The installation process for SLEPc is very similar to PETSc, with two stages: configuration
and compilation. SLEPC’s configuration is much simpler because most of the configuration
information is taken from PETSc, including compiler options and scalar type (real or complex).
See §1.2.2 for a discussion of options that are most relevant for SLEPc. Several configurations
can coexist in the same directory tree, so that for instance one can have SLEPc libraries compiled
with real scalars as well as with complex scalars. This is explained in §1.2.3. Also, system-based
installation is also possible with the --prefix option, as discussed in §1.2.4.

1.2.1 Standard Installation

The basic steps for the installation are described next. Note that prior to these steps, optional
packages must have been installed. If any of these packages is installed afterwards, reconfigu-
ration and recompilation is necessary. Refer to §1.2.2 and §6.6 for details about installation of
some of these packages.

1. Unbundle the distribution file with
$ tar xzf slepc-3.2-pO.tar.gz
or an equivalent command. This will create a directory and unpack the software there.

2. Set the environment variable SLEPC_DIR to the full path of the SLEP¢ home directory. For
example, under the bash shell:

$ export SLEPC_DIR=/home/username/slepc-3.2
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In addition to this variable, PETSC_DIR and PETSC_ARCH must also be set appropriately
(see §1.2.4 for a case in which PETSC_ARCH is not required), for example

$ export PETSC_DIR=/home/username/petsc-3.2
$ export PETSC_ARCH=arch-darwin-c-debug

3. Change to the SLEPc directory and run the configuration script:

$ cd $SLEPC_DIR
$ ./configure

4. If the configuration was successful, build the libraries:
$ make

5. After the compilation, try running some test examples with
$ make test

Examine the output for any obvious errors or problems.

1.2.2 Configuration Options

Several options are available in SLEPc’s configuration script. To see all available options, type
./configure --help.
In SLEPc, configure options have the following purposes:

e Specify a directory for prefix-based installation, as explained in §1.2.4.

e Enable external eigensolver packages. For example, to use ARPACK, specify the following
options (with the appropriate paths):

$ ./configure --with-arpack-dir=/usr/software/ARPACK
--with-arpack-flags=-lparpack,-larpack

Section 6.6 provides more details related to use of external libraries.

Additionally, PETSC’s configuration script provides a very long list of options that are relevant
to SLEPc. Here is a list of options that may be useful. Note that these are options of PETSc
that apply to both PETSc and SLEPc, in such a way that it is not possible to, e.g., build PETSc
without debugging and SLEPc with debugging.

o Add --with-scalar-type=complex to build complex scalar versions of all libraries. See
below a note related to complex scalars.

e Build single precision versions with -~-with-precision=single. In most applications, this
can achieve a significant reduction of memory requirements, and a moderate reduction of
computing time. Also, quadruple precision (128-bit floating-point representation) is also
available on systems using the gcc-4.6 compiler, using -—with-precision=__float128.
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e Enable use from Fortran. By default, PETSc’s configure looks for an appropriate Fortran
compiler. If not required, this can be disabled with --without-fortran. If required but
not correctly detected, the compiler to be used can be specified with a configure option.
In the case of Fortran 90, additional options are available for building interfaces and
datatypes.

o If not detected, use ——with-blas-lapack-1ib to specify the location of BLAS and LAPACK.
If sSLEPC’s configure complains about some missing LAPACK subroutines, reconfigure PETSc
with option --download-f2cblaslapack.

e Enable external libraries that provide direct linear solvers or preconditioners, such as
MUMPS, hypre, or SuperLU; for example, -~—download-mumps. These are especially rel-
evant for SLEPc in the case that a spectral transformation is used, see chapter 3.

e Enable use from C++, -—with-clanguage=C++.

e Add --with-64-bit-indices=1 to use 4 byte integers (long long) for indexing in vectors
and matrices. This is only needed when working with over roughly 2 billion unknowns.

e Build shared libraries, ——with-shared-libraries=1, for smaller executables whose sym-
bols are resolved at run time.

e Error-checking code can be disabled with --with-debugging=no, but this is only recom-
mended in production runs of well-tested applications.

e Enable GPU computing setting ——with-cuda=1 and other options, see §6.3 for details.

Note about complex scalar versions: PETSc supports the use of complex scalars by
defining the data type PetscScalar either as a real or complex number. This implies that two
different versions of the PETSc libraries can be built separately, one for real numbers and one
for complex numbers, but they cannot be used at the same time. SLEPc inherits this property.
In SLEPc it is not possible to completely separate real numbers and complex numbers because
the solution of non-symmetric real-valued eigenvalue problems may be complex. SLEPc has
been designed trying to provide a uniform interface to manage all the possible cases. However,
there are slight differences between the interface in each of the two versions. In this manual,
differences are clearly identified.

1.2.3 Installing Multiple Configurations in a Single Directory Tree

Often, it is necessary to build two (or more) versions of the libraries that differ in a few config-
uration options. For instance, versions for real and complex scalars, or versions for double and
single precision, or versions with debugging and optimized. In a standard installation, this is
handled by building all versions in the same directory tree, as explained below, so that source
code is not replicated unnecessarily. In contrast, in prefix-based installation where source code
is not present, the issue of multiple configurations is handled differently, as explained in §1.2.4.
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In a standard installation, the different configurations are identified by a unique name that
is assigned to the environment variable PETSC_ARCH. Let us illustrate how to set up PETSc with
two configurations. First, set a value of PETSC_ARCH and proceed with the installation of the
first one:

$ cd $PETSC_DIR

$ export PETSC_ARCH=arch-linux-gnu-c-debug-real
$ ./configure --with-scalar-type=real

$ make all test

Note that if PETSC_ARCH is not given a value, PETSc suggests one for us. After this, a subdirec-
tory named $PETSC_ARCH is created within $PETSC_DIR, that stores all information associated
to that configuration, including the built libraries, configuration files, automatically generated
source files, and log files. For the second configuration, proceed similarly:

$ cd $PETSC_DIR

$ export PETSC_ARCH=arch-linux-gnu-c-debug-complex
$ ./configure --with-scalar-type=complex

$ make all test

The value of PETSC_ARCH in this case must be different than the previous one. It is better to
set the value of PETSC_ARCH explicitly, because the name suggested by configure may coincide
with an existing value, thus overwriting a previous configuration. After successful installation
of the second configuration, two $PETSC_ARCH directories exist within $PETSC_DIR, and the user
can easily choose to build his/her application with either configuration by simply changing the
value of PETSC_ARCH.

The configuration of two versions of SLEPc in the same directory tree is very similar. The
only important restriction is that the value of PETSC_ARCH used in SLEPc must exactly match
an existing PETSc configuration, that is, a directory $PETSC_DIR/$PETSC_ARCH must exist.

1.2.4 Prefix-based Installation

Both PETSc and SLEPc allow for prefix-based installation. This consists in specifying a directory
to which the files generated during the building process are to be copied.

In PETSc, if an installation directory has been specified during configuration (with option
--prefix in step 3 of §1.2.1), then after building the libraries the relevant files are copied to
that directory by typing

$ make install

This is useful for building as a regular user and then copying the libraries and include files to
the system directories as root.

To be more precise, suppose that the configuration was done with —-prefix=/opt/petsc-
3.2-linux-gnu-c-debug. Then, make install will create directory /opt/petsc-3.2-1linux-
gnu-c-debug if it does not exist, and create subdirectories 1ib, conf, and include, that will
store the libraries, the configuration files, and the header files, respectively. Note that the source
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code files are not copied, nor the documentation, so the size of the installed directory will be
much smaller than the original one. For that reason, it is no longer necessary to allow for
several configurations to share a directory tree. In other words, in a prefix-based installation,
variable PETSC_ARCH loses significance and must be unset. To maintain several configurations,
one should specify different prefix directories, typically with a name that informs about the
configuration options used.

In order to prepare a prefix-based installation of SLEPc that uses a prefix-based installation
of PETSc, start by setting the appropriate value of PETSC_DIR. Then, run SLEPc’s configure with
a prefix directory.

$ export PETSC_DIR=/opt/petsc-3.2-linux-gnu-c-debug

$ unset PETSC_ARCH

$ cd $SLEPC_DIR

$ ./configure --prefix=/opt/slepc-3.2-linux-gnu-c-debug
$ make PETSC_ARCH=arch-installed-petsc

$ make PETSC_ARCH=arch-installed-petsc install

$ export SLEPC_DIR=/opt/slepc-3.2-linux-gnu-c-debug

Note that it is important to unset the value of PETSC_ARCH before SLEPc’s configure. The special
value arch-installed-petsc of the PETSC_ARCH variable is required only during SLEPc¢’s build,
and should not be used afterwards.

1.3 Running SLEPc Programs

Before using SLEPc, the user must first set the environment variable SLEPC_DIR, indicating the
full path of the directory containing SLEPc. For example, under the bash shell, a command of
the form

$ export SLEPC_DIR=/software/slepc-3.2

can be placed in the user’s .bashrc file. The SLEPC_DIR directory can be either a standard
installation SLEPc directory, or a prefix-based installation directory, see §1.2.4. In addition, the
user must set the environment variables required by PETSc, that is, PETSC_DIR, to indicate the
full path of the PETSc directory, and PETSC_ARCH to specify a particular architecture and set of
options. Note that PETSC_ARCH should not be set in the case of prefix-based installations.

All PETSc programs use the MPI (Message Passing Interface) standard for message-passing
communication [MPI Forum, 1994]. Thus, to execute SLEPc programs, users must know the
procedure for launching MPT jobs on their selected computer system(s). For instance, when
using the MPICH implementation of MPI and many others, the mpirun command can be used
to initiate a program as in the following example that uses eight processes:

$ mpirun -np 8 slepc_program [command-line options]

In MPI-2 compliant systems, the command mpiexec can be used instead. Note that MPI may
be deactivated during configuration of PETSc, if one wants to run only serial programs in a
laptop, for example.
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All PETSc-compliant programs support the use of the -h or -help option as well as the
-v or -version option. In the case of SLEPc programs, specific information for SLEPc is also
displayed.

1.4 Writing SLEPc Programs

Most SLEPc programs begin with a call to SlepcInitialize
SlepcInitialize(int *argc,char ***argv,char *file,char *help);

which initializes SLEPc, PETSc and MPI. This subroutine is very similar to PetscInitial-
ize, and the arguments have the same meaning. In fact, internally SlepcInitialize calls
PetscInitialize.

After this initialization, SLEPc programs can use communicators defined by PETSc. In most
cases users can employ the communicator PETSC_COMM_WORLD to indicate all processes in a given
run and PETSC_COMM_SELF to indicate a single process. MPI provides routines for generating
new communicators consisting of subsets of processes, though most users rarely need to use
these features. SLEPc users need not program much message passing directly with MPI, but
they must be familiar with the basic concepts of message passing and distributed memory
computing.

All sLEPc programs should call SlepcFinalize as their final (or nearly final) statement

ierr = SlepcFinalize();

This routine handles operations to be executed at the conclusion of the program, and calls
PetscFinalize if SlepcInitialize began PETSc.

Note to Fortran Programmers: In this manual all the examples and calling sequences
are given for the C/C++ programming languages. However, Fortran programmers can use most
of the functionality of SLEPc and PETSc from Fortran, with only minor differences in the user
interface. For instance, the two functions mentioned above have their corresponding Fortran
equivalent:

call SlepcInitialize(file,ierr)
call SlepcFinalize(ierr)

Section 6.7 provides a summary of the differences between using SLEPc from Fortran and
C/C++, as well as a complete Fortran example.

1.4.1 Simple SLEPc Example

A simple example is listed next that solves an eigenvalue problem associated with the one-
dimensional Laplacian operator discretized with finite differences. This example can be found
in ${SLEPC_DIR}/src/eps/examples/tutorials/exl.c. Following the code we highlight a
few of the most important parts of this example.

10 —
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*/

st

#i

#u
#d.
in

{

SLEPc - Scalable Library for Eigenvalue Problem Computations
Copyright (c) 2002-2011, Universitat Politecnica de Valencia, Spain

This file is part of SLEPc.

SLEPc is free software: you can redistribute it and/or modify it under the
terms of version 3 of the GNU Lesser General Public License as published by
the Free Software Foundation.

SLEPc is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.

You should have received a copy of the GNU Lesser General Public License
along with SLEPc. If not, see <http://www.gnu.org/licenses/>.

atic char help[] = "Standard symmetric eigenproblem corresponding to the Laplacian operator in 1 dimension.\n\n"

"The command line options are:\n"
" -n <n>, where <n> = number of grid subdivisions = matrix dimension.\n\n";

nclude <slepceps.h>

ndef __FUNCT__

efine __FUNCT__ "main"

t main(int argc,char **argv)

Mat A; /* problem matrix */

EPS eps; /* eigenproblem solver context */
const EPSType type;

PetscReal error,tol,re,im;

PetscScalar kr,ki,value[3];

Vec Xr,xi;

PetscInt n=30,i,Istart,Iend,col[3],nev,maxit,its,nconv;
PetscBool FirstBlock=PETSC_FALSE,LastBlock=PETSC_FALSE;

PetscErrorCode ierr;
SlepcInitialize(&argc,&argv, (char*)0,help);

ierr = PetscOptionsGetInt (PETSC_NULL,"-n",&n,PETSC_NULL) ;CHKERRQ(ierr);

ierr = PetscPrintf (PETSC_COMM_WORLD, "\n1-D Laplacian Eigenproblem, n=%d\n\n",n);CHKERRQ(ierr);

ierr = MatCreate (PETSC_COMM_WORLD,&A) ; CHKERRQ (ierr);
ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,n,n);CHKERRQ(ierr);
ierr = MatSetFromOptions(A);CHKERRQ(ierr);

ierr = MatGetOwnershipRange (A,&Istart,&Iend); CHKERRQ(ierr);

if (Istart==0) FirstBlock=PETSC_TRUE;

if (Iend==n) LastBlock=PETSC_TRUE;

value[0]=-1.0; value[1]=2.0; value[2]=-1.0;

for (i=(FirstBlock? Istart+1: Istart); i<(LastBlock? Iend-1: Iend); i++) {
col[0]=i-1; col[1]l=i; col[2]=i+1;
ierr = MatSetValues(A,1,&i,3,col,value,INSERT_VALUES) ; CHKERRQ(ierr) ;

}

if (LastBlock) {




70

80

85

90

95

100

105

115

120

1.4. Writing SLEPc Programs Chapter 1. Getting Started

i=n-1; col[0]=n-2; col[1]=n-1;

ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES) ; CHKERRQ(ierr);
¥
if (FirstBlock) {

i=0; col[0]=0; col[1]=1; value[0]=2.0; value[1]=-1.0;

ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES) ; CHKERRQ(ierr);
}

ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY) ; CHKERRQ(ierr);
ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY) ; CHKERRQ(ierr) ;

ierr = MatGetVecs(A,PETSC_NULL,&xr) ; CHKERRQ(ierr) ;
ierr = MatGetVecs(A,PETSC_NULL,&xi) ; CHKERRQ(ierr);

Y R i i
Create the eigensolver and set various options
—————————————————————————————————— */
/*
Create eigensolver context
*/
ierr = EPSCreate(PETSC_COMM_WORLD,&eps) ; CHKERRQ (ierr) ;
/*
Set operators. In this case, it is a standard eigenvalue problem
*/
ierr = EPSSetOperators(eps,A,PETSC_NULL) ; CHKERRQ(ierr) ;
ierr = EPSSetProblemType (eps,EPS_HEP) ; CHKERRQ(ierr) ;
/*
Set solver parameters at runtime
*/
ierr = EPSSetFromOptions(eps) ;CHKERRQ(ierr);
R i
Solve the eigensystem
—————————————————————————————————— */
ierr = EPSSolve(eps) ;CHKERRQ(ierr) ;
/*
Optional: Get some information from the solver and display it
*/

ierr = EPSGetIterationNumber (eps,&its);CHKERRQ(ierr);

ierr = PetscPrintf (PETSC_COMM_WORLD," Number of iterations of the method: %D\n",its);CHKERRQ(ierr);
ierr = EPSGetType (eps,&type) ; CHKERRQ(ierr);

ierr = PetscPrintf (PETSC_COMM_WORLD," Solution method: %s\n\n",type);CHKERRQ(ierr);

ierr = EPSGetDimensions(eps,&nev,PETSC_NULL,PETSC_NULL) ; CHKERRQ(ierr);

ierr = PetscPrintf (PETSC_COMM_WORLD," Number of requested eigenvalues: %D\n",nev);CHKERRQ(ierr);
ierr = EPSGetTolerances(eps,&tol,&maxit) ;CHKERRQ(ierr) ;

ierr = PetscPrintf (PETSC_COMM_WORLD," Stopping condition: tol=%.4G, maxit=%D\n",tol,maxit);CHKERRQ(ierr);

[* = — — = = — = - — - - - - - - - - - - - - - - - - - - - - - - -
Display solution and clean up
---------------------------------- */
/*
Get number of converged approximate eigenpairs
*/

ierr = EPSGetConverged(eps,&nconv) ; CHKERRQ(ierr);
ierr = PetscPrintf (PETSC_COMM_WORLD," Number of converged eigenpairs: %D\n\n",nconv);CHKERRQ(ierr) ;

if (nconv>0) {
/*
Display eigenvalues and relative errors

*/
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ie

fo

#if de

#else

#endif

}
ie!

}

/*
F
*/

ierr =

ierr
ierr
ierr
ierr
retu:

rr = PetscPrintf (PETSC_COMM_WORLD,
" k | 1Ax-kx|1/] kx| |\n"
" \n") ; CHKERRQ (ierr) ;

r (i=0;i<nconv;i++) {

/*
Get converged eigenpairs: i-th eigenvalue is stored in kr (real part) and
ki (imaginary part)

*/
ierr = EPSGetEigenpair(eps,i,&kr,&ki,xr,xi);CHKERRQ(ierr) ;
/*

Compute the relative error associated to each eigenpair
*/

ierr = EPSComputeRelativeError(eps,i,&error) ;CHKERRQ(ierr) ;

fined (PETSC_USE_COMPLEX)
re = PetscRealPart(kr);
im = PetscImaginaryPart(kr);

re = kr;
im = ki;

if (im!=0.0) {
ierr = PetscPrintf (PETSC_COMM_WORLD," %9F%+9F j %12G\n",re,im,error) ;CHKERRQ(ierr);
} else {
ierr = PetscPrintf (PETSC_COMM_WORLD,"  %12F %12G\n" ,re,error) ; CHKERRQ (ierr) ;
}

rr = PetscPrintf (PETSC_COMM_WORLD, "\n") ; CHKERRQ(ierr);

ree work space

EPSDestroy (&eps) ; CHKERRQ(ierr) ;
= MatDestroy (&A) ; CHKERRQ(ierr);
= VecDestroy (&xr) ; CHKERRQ(ierr) ;
= VecDestroy (&xi) ; CHKERRQ(ierr) ;
= SlepcFinalize() ; CHKERRQ(ierr);
rn O;

Include Files

The C/C++ include files for SLEPc should be used via statements such as

#include "slepceps.h"

where slepceps.h is the include file for the EPS component. Each SLEPc program must specify

an in

clude file that corresponds to the highest level SLEPc objects needed within the program;

all of the required lower level include files are automatically included within the higher level

files.

For example, slepceps.h includes slepcst.h (spectral transformations), and slepcsys.h

(base SLEPc file). Some PETSc header files are included as well, such as petscksp.h. The SLEPc
include files are located in the directory ${SLEPC_DIR}/include.

13 —
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The Options Database

All the PETSc functionality related to the options database is available in SLEPc. This al-
lows the user to input control data at run time very easily. In this example the command
PetscOptionsGetInt (PETSC_NULL,"-n",&n,PETSC_NULL); checks whether the user has pro-
vided a command line option to set the value of n, the problem dimension. If so, the variable
n is set accordingly; otherwise, n remains unchanged.

Vectors and Matrices

Usage of matrices and vectors in SLEPc is exactly the same as in PETSc. The user can create a
new parallel or sequential matrix, A, which has M global rows and N global columns, with

MatCreate (MPI_Comm comm,Mat *A);
MatSetSizes(Mat A,PetscInt m,PetscInt n,PetscInt M,PetscInt N);
MatSetFromOptions(Mat A);

where the matrix format can be specified at runtime. The example creates a matrix, sets the
nonzero values with MatSetValues and then assembles it.

Eigensolvers

Usage of eigensolvers is very similar to other kinds of solvers provided by PETSc. After creating
the matrix (or matrices) that define the problem, Az = kz (or Az = kBx), the user can then
use EPS to solve the system with the following sequence of commands:

EPSCreate (MPI_Comm comm,EPS *eps);

EPSSetOperators(EPS eps,Mat A,Mat B);

EPSSetProblemType (EPS eps,EPSProblemType type);

EPSSetFromOptions (EPS eps);

EPSSolve (EPS eps);

EPSGetConverged (EPS eps,PetscInt *nconv);

EPSGetEigenpair (EPS eps,PetscInt i,PetscScalar *kr,PetscScalar *ki,Vec xr,Vec xi);
EPSDestroy (EPS eps) ;

The user first creates the EPS context and sets the operators associated with the eigensystem
as well as the problem type. The user then sets various options for customized solution, solves
the problem, retrieves the solution, and finally destroys the EPS context. Chapter 2 describes
in detail the EPS package, including the options database that enables the user to customize
the solution process at runtime by selecting the solution algorithm and also specifying the
convergence tolerance, the number of eigenvalues, the dimension of the subspace, etc.

Spectral Transformation

In the example program shown above there is no explicit reference to spectral transforma-
tions. However, an ST object is handled internally so that the user is able to request different
transformations such as shift-and-invert. Chapter 3 describes the ST package in detail.
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Error Checking

All SLEPc routines return an integer indicating whether an error has occurred during the call.
The error code is set to be nonzero if an error has been detected; otherwise, it is zero. The
PETSc macro CHKERRQ (ierr) checks the value of ierr and calls the PETSc error handler upon
error detection. CHKERRQ (ierr) should be placed after all subroutine calls to enable a complete
error traceback. See the PETSc documentation for full details.

1.4.2 Writing Application Codes with SLEPc

Several example programs demonstrate the software usage and can serve as templates for de-
veloping custom applications. They are scattered throughout the SLEPc directory tree, in
particular in the examples/tutorials directories under each class subdirectory.

To write a new application program using SLEPc, we suggest the following procedure:

1. Install and test SLEPc according to the instructions given in the documentation.

2. Copy the SLEPc example that corresponds to the class of problem of interest (e.g., singular
value decomposition).

3. Copy the makefile within the example directory (or create a new one as explained below);
compile and run the example program.

4. Use the example program as a starting point for developing a custom code.

Application program makefiles can be set up very easily just by including one file from
the SLEPc makefile system. All the necessary PETSc definitions are loaded automatically. The
following sample makefile illustrates how to build C and Fortran programs:

default: exl

include ${SLEPC_DIR}/conf/slepc_common

exl: exl.o chkopts
-${CLINKER} -0 exl exl.o ${SLEPC_LIB}
${BRM} exl.0

ex1f: exlf.o chkopts

-${FLINKER} -0 ex1f ex1f.o ${SLEPC_LIB}
${RM} exif.o

— 15 —
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CHAPTER 2

EPS: Eigenvalue Problem Solver

The Eigenvalue Problem Solver (EPS) is the main object provided by sLEPc. It is used to
specify an eigenvalue problem, either in standard or generalized form, and provides uniform
and efficient access to all of the eigensolvers included in the package. Conceptually, the level of
abstraction occupied by EPS is similar to other solvers in PETSc such as KSP for solving linear
systems of equations.

2.1 Eigenvalue Problems

In this section, we present very briefly some basic concepts about eigenvalue problems as well
as general techniques used to solve them. The description is not intended to be exhaustive. The
objective is simply to define terms that will be referred to throughout the rest of the manual.
Readers who are familiar with the terminology and the solution approach can skip this section.
For a more comprehensive description, we refer the reader to monographs such as [Stewart,
2001], [Bai et al., 2000], [Saad, 1992] or [Parlett, 1980]. A historical perspective of the topic
can be found in [Golub and van der Vorst, 2000]. See also the SLEPc technical reports.
In the standard formulation, the eigenvalue problem consists in the determination of A € C
for which the equation
Ar = \x (2.1)

has nontrivial solution, where A € C"*" and x € C™. The scalar A and the vector x are called
eigenvalue and (right) eigenvector, respectively. Note that they can be complex even when the
matrix is real. If X is an eigenvalue of A then \ is an eigenvalue of its conjugate transpose, A*,
or equivalently

yA=Ny" (2.2)

17
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where y is called the left eigenvector.
In many applications, the problem is formulated as

Az = ABzx (2.3)

where B € C™*", which is known as the generalized eigenvalue problem. Usually, this problem
is solved by reformulating it in standard form, for example B~!Ax = Az if B is non-singular.

SLEPc focuses on the solution of problems in which the matrices are large and sparse. Hence,
only methods that preserve sparsity are considered. These methods obtain the solution from the
information generated by the application of the operator to various vectors (the operator is a
simple function of matrices A and B), that is, matrices are only used in matrix-vector products.
This not only maintains sparsity but allows the solution of problems in which matrices are not
available explicitly.

In practical analyses, from the n possible solutions, typically only a few eigenpairs (A, z)
are considered relevant, either in the extremities of the spectrum, in an interval, or in a region
of the complex plane. Depending on the application, either eigenvalues or eigenvectors or both
are required. In some cases, left eigenvectors are also of interest.

Projection Methods. Most eigensolvers provided by SLEPc perform a Rayleigh-Ritz pro-
jection for extracting the spectral approximations, that is, they project the problem onto a
low-dimensional subspace that is built appropriately. Suppose that an orthogonal basis of this
subspace is given by V; = [v1,v,...,v;]. If the solutions of the projected (reduced) problem
Bjs = 0s (ie., VjTAVj = Bj) are assumed to be (0;,s;), i = 1,2,...,7, then the approximate
eigenpairs (), &;) of the original problem (Ritz value and Ritz vector) are obtained as

Ai=0; (2.4)
.’Z‘i = V}‘Si . (25)

Starting from this general idea, eigensolvers differ from each other in which subspace is used,
how it is built and other technicalities aimed at improving convergence, reducing storage re-
quirements, etc.
The subspace
Km(A,v) = span {v, Av, A?v, . .. ,Am_lv} , (2.6)

is called the m-th Krylov subspace corresponding to A and v. Methods that use subspaces of
this kind to carry out the projection are called Krylov methods. One example of such methods
is the Arnoldi algorithm: starting with vy, ||v1]2 = 1, the Arnoldi basis generation process can
be expressed by the recurrence

J
Uj+1hj+17j =w; = AUj - Z h@jw y (27)
i=1

where h; ; are the scalar coefficients obtained in the Gram-Schmidt orthogonalization of Awv;
with respect to v;, i =1,2,..., 4, and hjy1 ; = ||wj]|2. Then, the columns of V; span the Krylov
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subspace IC;(A,v1) and Az = Az is projected into H;s = fs, where H; is an upper Hessenberg
matrix with elements h; ;, which are 0 for i > j 4+ 2. The related Lanczos algorithms obtain a
projected matrix that is tridiagonal.

A generalization to the above methods are the block Krylov strategies, in which the starting
vector vy is replaced by a full rank n xp matrix V7, which allows for better convergence properties
when there are multiple eigenvalues and can provide better data management on some computer
architectures. Block tridiagonal and block Hessenberg matrices are then obtained as projections.

It is generally assumed (and observed) that the Lanczos and Arnoldi algorithms find so-
lutions at the extremities of the spectrum. Their convergence pattern, however, is strongly
related to the eigenvalue distribution. Slow convergence may be experienced in the presence
of tightly clustered eigenvalues. The maximum allowable j may be reached without having
achieved convergence for all desired solutions. Then, restarting is usually a useful technique
and different strategies exist for that purpose. However, convergence can still be very slow
and acceleration strategies must be applied. Usually, these techniques consist in computing
eigenpairs of a transformed operator and then recovering the solution of the original problem.
The aim of these transformations is twofold. On one hand, they make it possible to obtain
eigenvalues other than those lying in the boundary of the spectrum. On the other hand, the
separation of the eigenvalues of interest is improved in the transformed spectrum thus leading to
faster convergence. The most commonly used spectral transformation is called shift-and-invert,
which works with operator (A — oI)~!. It allows the computation of eigenvalues closest to o
with very good separation properties. When using this approach, a linear system of equations,
(A — ol)y = z, must be solved in each iteration of the eigenvalue process.

Preconditioned Eigensolvers. In many applications, Krylov eigensolvers perform very well
because Krylov subspaces are optimal in a certain theoretical sense. However, these methods
may not be appropriate in some situations such as the computation of interior eigenvalues.
The spectral transformation mentioned above may not be a viable solution or it may be too
costly. For these reasons, other types of eigensolvers such as Davidson and Jacobi-Davidson rely
on a different way of expanding the subspace. Instead of satisfying the Krylov relation, these
methods compute the new basis vector by the so-called correction equation. The resulting
subspace may be richer in the direction of the desired eigenvectors. These solvers may be
competitive especially for computing interior eigenvalues. From a practical point of view, the
correction equation may be seen as a cheap replacement for the shift-and-invert system of
equations, (A — ol)y = z. By cheap we mean that it may be solved inaccurately without
compromising robustness, via a preconditioned iterative linear solver. For this reason, these are
known as preconditioned eigensolvers.

Related Problems. In many applications such as the analysis of damped vibrating systems
the problem to be solved is a quadratic eigenvalue problem (QEP). Another linear algebra
problem that is very closely related to the eigenvalue problem is the singular value decomposition
(SVD). sLEPc provides specific packages for both problems. The reader is referred to chapters
4 and 5.
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EPS eps; /* eigensolver context */

Mat A; /* matrix of Ax=kx */

Vec Xr, Xi; /* eigenvector, x */

PetscScalar kr, ki; /* eigenvalue, k */
5 PetsclInt j, nconv;

PetscReal error;

EPSCreate( PETSC_COMM_WORLD, &eps );
EPSSetOperators( eps, A, PETSC_NULL );

10 EPSSetProblemType( eps, EPS_NHEP );
EPSSetFromOptions( eps );
EPSSolve( eps );
EPSGetConverged( eps, &nconv );
for (j=0; j<nconv; j++) {

15 EPSGetEigenpair( eps, j, &kr, &ki, xr, xi );

EPSComputeRelativeError( eps, j, &error );

}
EPSDestroy( eps );

Figure 2.1: Example code for basic solution with EPS.

2.2 Basic Usage

The EPS module in SLEPc is used in a similar way as PETSc modules such as KSP. All the
information related to an eigenvalue problem is handled via a context variable. The usual object
management functions are available (EPSCreate, EPSDestroy, EPSView, EPSSetFromOptions).
In addition, the EPS object provides functions for setting several parameters such as the number
of eigenvalues to compute, the dimension of the subspace, the portion of the spectrum of interest,
the requested tolerance or the maximum number of iterations allowed.

The solution of the problem is obtained in several steps. First of all, the matrices associated
to the eigenproblem are specified via EPSSetOperators and EPSSetProblemType is used to
specify the type of problem. Then, a call to EPSSolve is done that invokes the subroutine for
the selected eigensolver. EPSGetConverged can be used afterwards to determine how many of
the requested eigenpairs have converged to working accuracy. EPSGetEigenpair is finally used
to retrieve the eigenvalues and eigenvectors.

In order to illustrate the basic functionality of the EPS package, a simple example is shown in
Figure 2.1. The example code implements the solution of a simple standard eigenvalue problem.
Code for setting up the matrix A is not shown and error-checking code is omitted.

All the operations of the program are done over a single EPS object. This solver context is
created in line 8 with the command

EPSCreate (MPI_Comm comm,EPS *eps);

Here comm is the MPI communicator, and eps is the newly formed solver context. The com-
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municator indicates which processes are involved in the EPS object. Most of the EPS operations
are collective, meaning that all the processes collaborate to perform the operation in parallel.

Before actually solving an eigenvalue problem with EPS, the user must specify the matrices
associated to the problem, as in line 9, with the following routine

EPSSetOperators(EPS eps,Mat A,Mat B);

The example specifies a standard eigenproblem. In the case of a generalized problem, it would
be necessary also to provide matrix B as the third argument to the call. The matrices specified
in this call can be in any PETSc format. In particular, EPS allows the user to solve matrix-free
problems by specifying matrices created via MatCreateShell. A more detailed discussion of
this issue is given in §6.2.

After setting the problem matrices, the problem type is set with EPSSetProblemType. This
is not strictly necessary since if this step is skipped then the problem type is assumed to be
non-symmetric. More details are given in §2.3. At this point, the value of the different options
could optionally be set by means of a function call such as EPSSetTolerances (explained later
in this chapter). After this, a call to EPSSetFromOptions should be made as in line 11,

EPSSetFromOptions (EPS eps) ;

The effect of this call is that options specified at runtime in the command line are passed
to the EPS object appropriately. In this way, the user can easily experiment with different
combinations of options without having to recompile. All the available options as well as the
associated function calls are described later in this chapter.

Line 12 launches the solution algorithm, simply with the command

EPSSolve (EPS eps);

The subroutine that is actually invoked depends on which solver has been selected by the user.
After the call to EPSSolve has finished, all the data associated to the solution of the eigen-
problem is kept internally. This information can be retrieved with different function calls, as in
lines 13 to 17. This part is described in detail in §2.5.
Once the EPS context is no longer needed, it should be destroyed with the command

EPSDestroy (EPS eps);

The above procedure is sufficient for general use of the EPS package. As in the case of the
KSP solver, the user can optionally explicitly call

EPSSetUp (EPS eps);

before calling EPSSolve to perform any setup required for the eigensolver.

Internally, the EPS object works with an ST object (spectral transformation, described in
chapter 3). To allow application programmers to set any of the spectral transformation options
directly within the code, the following routine is provided to extract the ST context,

EPSGetST(EPS eps,ST *st);
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Problem Type EPSProblemType Command line key

Hermitian EPS_HEP -eps_hermitian
Non-Hermitian EPS_NHEP -eps_non_hermitian
Generalized Hermitian EPS_GHEP -eps_gen_hermitian
Generalized Non-Hermitian EPS_GNHEP -eps_gen_non_hermitian
GNHEP with positive (semi-)definite B EPS_PGNHEP -eps_pos_gen_non_hermitian

Table 2.1: Problem types considered in EPS.

With the command
EPSView(EPS eps,PetscViewer viewer);

it is possible to examine the actual values of the different settings of the EPS object, including
also those related to the associated ST object. This is useful for making sure that the solver is
using the settings that the user wants.

2.3 Defining the Problem

SLEPc is able to cope with different kinds of problems. Currently supported problem types
are listed in Table 2.1. An eigenproblem is generalized (Az = ABx) if the user has specified
two matrices (see EPSSetOperators above), otherwise it is standard (Az = Az). A standard
eigenproblem is Hermitian if matrix A is Hermitian (i.e., A = A*) or, equivalently in the
case of real matrices, if matrix A is symmetric (i.e., A = AT). A generalized eigenproblem is
Hermitian if matrix A is Hermitian (symmetric) and B is Hermitian (symmetric) and positive
(semi-)definite. A special case of generalized non-Hermitian problem is when A is non-Hermitian
but B is Hermitian and positive (semi-)definite, see §3.4.3 and §3.4.4 for discussion.

The problem type can be specified at run time with the corresponding command line key
or, more usually, within the program with the function

EPSSetProblemType (EPS eps,EPSProblemType type);

By default, SLEPc assumes that the problem is non-Hermitian. Some eigensolvers are able
to exploit symmetry, that is, they compute a solution for Hermitian problems with less stor-
age and/or computational cost than other methods that ignore this property. Also, symmetric
solvers may be more accurate. On the other hand, some eigensolvers in SLEPc only have a
symmetric version and will abort if the problem is non-Hermitian. In the case of generalized
eigenproblems some considerations apply regarding symmetry, especially in the case of singu-
lar B. This topic is tackled in §3.4.3 and §3.4.4. For all these reasons, the user is strongly
recommended to always specify the problem type in the source code.

The type of the problem can be determined with the functions

EPSIsGeneralized (EPS eps,PetscTruth *gen);
EPSIsHermitian(EPS eps,PetscTruth *her);
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The user can specify how many eigenvalues (and eigenvectors) to compute. The default is
to compute only one. The function

EPSSetDimensions (EPS eps,PetscInt nev,PetscInt ncv,PetscInt mpd);

allows the specification of the number of eigenvalues to compute, nev. The second argument
can be set to prescribe the number of column vectors to be used by the solution algorithm, ncv,
that is, the largest dimension of the working subspace. The third argument has to do with a
more advanced usage, as explained in §2.6.4. These parameters can also be set at run time with
the options -eps_nev, —eps_ncv and -eps_mpd. For example, the command line

$ ./program -eps_nev 10 -eps_ncv 24

requests 10 eigenvalues and instructs to use 24 column vectors. Note that ncv must be at least
equal to nev, although in general it is recommended (depending on the method) to work with
a larger subspace, for instance ncv > 2 - nev or even more. The case that the user requests a
relatively large number of eigenpairs is discussed in §2.6.4.

By default, only right eigenvectors are computed. To compute also left eigenvectors, the
user should call the next function. Note that support for left eigenvectors is limited and will be
extended in future versions of SLEPc.

EPSSetLeftVectorsWanted (EPS eps,PetscTruth leftvecs);

Eigenvalues of Interest. For the selection of the portion of the spectrum of interest, there
are several alternatives. In real symmetric problems, one may want to compute the largest or
smallest eigenvalues in magnitude, or the leftmost or rightmost ones, or even all eigenvalues
in a given interval. In other problems, in which the eigenvalues can be complex, then one can
select eigenvalues depending on the magnitude, or the real part or even the imaginary part.
Sometimes the eigenvalues of interest are those closest to a given target value, 7, measuring the
distance either in the ordinary way or along the real (or imaginary) axis. Table 2.2 summarizes
all the possibilities available for the function

EPSSetWhichEigenpairs (EPS eps,EPSWhich which);

which can also be specified at the command line. This criterion is used both for configuring
how the eigensolver seeks eigenvalues (note that not all these possibilities are available for all
the solvers) and also for sorting the computed values. The default is to compute the largest
magnitude eigenvalues, except for those solvers in which this option is not available. There is
another exception related to the use of some spectral transformations, see chapter 3.

For the sorting criteria relative to a target value, the following function must be called in
order to specify such value 7:

EPSSetTarget (EPS eps,PetscScalar target);

or, alternatively, with the command-line key -eps_target. Note that, since the target is defined
as a PetscScalar, complex values of 7 are allowed only in the case of complex scalar builds of
the SLEPc library.
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EPSWhich

Command line key

Sorting criterion

EPS_LARGEST_MAGNITUDE
EPS_SMALLEST_MAGNITUDE
EPS_LARGEST_REAL
EPS_SMALLEST_REAL
EPS_LARGEST_IMAGINARY
EPS_SMALLEST_IMAGINARY

-eps_largest_magnitude
-eps_smallest_magnitude
-eps_largest_real
-eps_smallest_real
-eps_largest_imaginary
-eps_smallest_imaginary

Largest ||
Smallest |A|
Largest Re(\)
Smallest Re(\)
Largest Im(\)"
Smallest Im(\)*

EPS_TARGET_MAGNITUDE
EPS_TARGET_REAL
EPS_TARGET_IMAGINARY
EPS_ALL

-eps_target_magnitude
-eps_target_real
-eps_target_imaginary
-eps_all

Smallest |\ — 7]
Smallest |Re(A — 7)|
Smallest |Tm(A — 7)|
All X € [a, b]

EPS_WHICH_USER

user-defined

Table 2.2: Available possibilities for selection of the eigenvalues of interest.

The use of a target value makes sense if the eigenvalues of interest are located in the interior
of the spectrum. Since these eigenvalues are usually more difficult to compute, the eigensolver
by itself may not be able to obtain them, and additional tools are normally required. There are
two possibilities for this:

e To use harmonic extraction (see §2.6.5), a variant of some solvers that allows a better
approximation of interior eigenvalues without changing the way the subspace is built.

e To use a spectral transformation such as shift-and-invert (see chapter 3), where the sub-
space is built from a transformed problem (usually much more costly).

The special case of computing all eigenvalues in an interval is discussed in §3.4.5, since it is
related also to spectral transformations. In this case, instead of a target value the user has to
specify the computational interval with

EPSSetInterval (EPS eps,PetscScalar a,PetscScalar b);

which is equivalent to -eps_interval <a,b>.
To conclude this section, we mention the possibility of defining an arbitrary sorting criterion
by means of EPS_WHICH_USER in combination with EPSSetEigenvalueComparison.

2.4 Selecting the Eigensolver

The available methods for solving the eigenvalue problems are the following:

e Power Iteration with deflation. When combined with shift-and-invert (see chapter 3), it
is equivalent to the Inverse Iteration. Also, this solver embeds the Rayleigh Quotient
TIteration (RQI) by allowing variable shifts.

LIf sLEPc is compiled for real scalars, then the absolute value of the imaginary part, |Tm())|, is used for
eigenvalue selection and sorting.
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Options
Method EPSType Database Name Default
Power / Inverse / RQI ~EPSPOWER power
Subspace Iteration EPSSUBSPACE subspace
Arnoldi EPSARNOLDI arnoldi
Lanczos EPSLANCZ0S lanczos
Krylov-Schur EPSKRYLOVSCHUR krylovschur *
Generalized Davidson = EPSGD gd
Jacobi-Davidson EPSJD jd
LAPACK solver EPSLAPACK lapack
Wrapper to ARPACK EPSARPACK arpack
Wrapper to PRIMME EPSPRIMME primme
Wrapper to BLZPACK EPSBLZPACK blzpack
Wrapper to TRLAN EPSTRLAN trlan
Wrapper to BLOPEX EPSBLOPEX blopex

Table 2.3: Eigenvalue solvers available in the EPS module.

e Subspace Iteration with Rayleigh-Ritz projection and locking.
e Arnoldi method with explicit restart and deflation.
e Lanczos with explicit restart and deflation, using different reorthogonalization strategies.

e Krylov-Schur, a variation of Arnoldi with a very effective restarting technique. In the case
of symmetric problems, this is equivalent to the thick-restart Lanczos method.

o Generalized Davidson, a simple iteration based on the subspace expansion by the precon-
ditioned residual.

e Jacobi-Davidson, a preconditioned eigensolver with an effective correction equation.

The default solver is Krylov-Schur. A detailed description of the implemented algorithms is
provided in the SLEPc Technical Reports. In addition to these methods, SLEPc also provides
wrappers to external packages such as ARPACK, BLZPACK, or TRLAN. A complete list of these
interfaces can be found in §6.6.

As an alternative, SLEPc provides an interface to some LAPACK routines. These routines
operate in dense mode with only one processor and therefore are suitable only for moderate
size problems. This solver should be used only for debugging purposes.

The solution method can be specified procedurally or via the command line. The application
programmer can set it by means of the command

EPSSetType (EPS eps,EPSType method) ;

while the user writes the options database command -eps_type followed by the name of the
method (see Table 2.3).

925 —



2.5. Retrieving the Solution

Chapter 2. EPS: Eigenvalue Problem Solver

Method Portion of spectrum Problem type Complex
power Largest || any yes
subspace Largest || any yes
arnoldi any2 any yes
lanczos any?> EPS_HEP, EPS_GHEP yes
krylovschur any any yes
gd any2 any yes
jd any?> any yes
lapack any any yes
arpack any? any yes
primme Largest and smallest Re(\) EPS_HEP yes
blzpack Smallest Re(\) EPS_HEP, EPS_GHEP no
trlan Largest and smallest Re()) EPS_HEP no
blopex Smallest Re()\) EPS_HEP, EPS_GHEP no

Table 2.4: Supported problem types for all eigensolvers available in SLEPc.

Not all the methods can be used for all problem types. Table 2.4 summarizes the scope of
each eigensolver by listing which portion of the spectrum can be selected (as defined in Table
2.2), which problem types are supported (as defined in Table 2.1) and whether they are available
or not in the complex version of SLEPc. Also, the default value of some parameters differ from
one solver to the other, as shown in Table 2.5. This table also illustrates the different storage
requirements. All solvers need memory at least for storing ncv vectors, but in addition some
extra work storage such as auxiliary vectors is necessary. The last columns of Table 2.5 indicates
the number of auxiliary vectors required in each case.

2.5 Retrieving the Solution

Once the call to EPSSolve is complete, all the data associated to the solution of the eigenproblem
is kept internally in the EPS object. This information can be obtained by the calling program
by means of a set of functions described in this section.

As explained below, the number of computed solutions depends on the convergence and,
therefore, it may be different from the number of solutions requested by the user. So the first
task is to find out how many solutions are available, with

EPSGetConverged (EPS eps,PetscInt *nconv);

Usually, the number of converged solutions, nconv, will be equal to nev, but in general it
will be a number ranging from 0 to ncv (here, nev and ncv are the arguments of function
EPSSetDimensions).

2Any of the selection criteria except for EPS_ALL, which is supported only by Krylov-Schur; see §3.4.5.
y y by Kry
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Method ncv max_it Storage
power nev max(2000, 100V) 2
subspace max(2 - nev, nev + 15) max(100, [2N/ncv]) nev
arnoldi max(2 - nev, nev + 15) max(100, [2N/ncv]) 1
lanczos max(2 - nev, nev + 15) max(100, [2N/ncv]) 1
krylovschur max(2 - nev, nev + 15) max(100, [2N/ncv]) 1
gd max(2 - nev,nev + 15) +1  max(100, [2N/ncv]) 4ncv +1
jd max(2 - nev,nev + 15) +1 max(100, [2N/ncv]) 4ncv +1
lapack N - N
arpack max (20, 2-nev+1) max(300, [2N/ncv]) 4
primme max(20,2-nev—+1) max (1000, N) 3
blzpack min(nev+10,2-nev) max(1000, N) > 187
trlan nev max (1000, N) nev + 1
blopex nev max(100, [2N/ncv]) newv

Table 2.5: Default parameter values for all eigensolvers available in SLEPc.

2.5.1 The Computed Solution
The user may be interested in the eigenvalues, or the eigenvectors, or both. The function

EPSGetEigenpair (EPS eps,PetscInt j,PetscScalar *kr,PetscScalar *ki,
Vec xr,Vec xi);

returns the j-th computed eigenvalue/eigenvector pair. Typically, this function is called inside
a loop for each value of j from 0 to nconv—1. Note that eigenvalues are ordered according to
the same criterion specified with function EPSSetWhichEigenpairs for selecting the portion of
the spectrum of interest. The meaning of the last 4 parameters depends on whether SLEPc has
been compiled for real or complex scalars, as detailed below. The eigenvectors are normalized
so that they have a unit 2-norm, except for problem type EPS_GHEP in which case returned
eigenvectors have a unit B-norm.

Real sLEPc. In this case, all Mat and Vec objects are real. The computed approximate solution
returned by the function EPSGetEigenpair is stored in the following way: kr and ki contain the
real and imaginary parts of the eigenvalue, respectively, and xr and xi contain the associated
eigenvector. Two cases can be distinguished:

e When ki is zero, it means that the j-th eigenvalue is a real number. In this case, kr is
the eigenvalue and xr is the corresponding eigenvector. The vector xi is set to all zeros.

e If ki is different from zero, then the j-th eigenvalue is a complex number and, therefore, it
is part of a complex conjugate pair. Thus, the j-th eigenvalue is kr+ ¢-ki. With respect to
the eigenvector, xr stores the real part of the eigenvector and xi the imaginary part, that

o7



2.5. Retrieving the Solution Chapter 2. EPS: Eigenvalue Problem Solver

is, the j-th eigenvector is xr+i-xi. The (j -+ 1)-th eigenvalue (and eigenvector) will be the
corresponding complex conjugate and will be returned when function EPSGetEigenpair
is invoked with index j+41. Note that the sign of the imaginary part is returned correctly
in all cases (users need not change signs).

Complex sLEPc. In this case, all Mat and Vec objects are complex. The computed solution
returned by function EPSGetEigenpair is the following: kr contains the (complex) eigenvalue
and xr contains the corresponding (complex) eigenvector. In this case, ki and xi are not used
(set to all zeros).

2.5.2 Reliability of the Computed Solution

In this subsection, we discuss how a-posteriori error bounds can be obtained in order to assess
the accuracy of the computed solutions. These bounds are based on the so-called residual
vector, defined as

r=A% -\ , (2.8)

or r = A% — AB#Z in the case of a generalized problem, where A and & represent any of the
nconv computed eigenpairs delivered by EPSGetEigenpair (note that this function returns a
normalized ).
In the case of Hermitian problems, it is possible to demonstrate the following property (see
for example [Saad, 1992, ch. 3]): 3
A=A <l (2.9)

where A is an exact eigenvalue. Therefore, the 2-norm of the residual vector can be used as a
bound for the absolute error in the eigenvalue.

In the case of non-Hermitian problems, the situation is worse because no simple relation
such as Eq. 2.9 is available. This means that in this case the residual norms may still give
an indication of the actual error but the user should be aware that they may sometimes be
completely wrong, especially in the case of highly non-normal matrices. A better bound would
involve also the residual norm of the left eigenvector.

With respect to eigenvectors, we have a similar scenario in the sense that bounds for the
error may be established in the Hermitian case only, for example the following one:

sinf(z, z) < HT% , (2.10)
where 0(z,Z) is the angle between the computed and exact eigenvectors, and ¢ is the distance
from A to the rest of the spectrum. This bound is not provided by SLEPc because § is not
available. The above expression is given here simply to warn the user about the fact that
accuracy of eigenvectors may be deficient in the case of clustered eigenvalues.

In the case of non-Hermitian problems, SLEPc provides the alternative of retrieving an
orthonormal basis of an invariant subspace instead of getting individual eigenvectors. This
is done with function
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EPSGetInvariantSubspace(EPS eps,Vec *v);

This is sufficient in some applications and is safer from the numerical point of view.

Computation of Bounds. The following SLEPc function
EPSComputeResidualNorm(EPS eps,PetscInt j,PetscReal *norm);

computes the 2-norm of 7;. Normally, the residual norm is not used directly as a bound in
absolute terms, as in Eq. 2.9. Rather, the error is expressed relative to the eigenvalue or to the
matrix norms. For this, the following function can be used instead:

EPSComputeRelativeError (EPS eps,PetscInt j,PetscReal *error);

The way in which it is relativized is the same as the one used for convergence checking, as
described below.

2.5.3 Controlling and Monitoring Convergence

All the eigensolvers provided by SLEPc are iterative in nature, meaning that the solutions are
(usually) improved at each iteration until they are sufficiently accurate, that is, until convergence
is achieved. The number of iterations required by the process can be obtained with the function

EPSGetIterationNumber (EPS eps,PetscInt *its);

which returns in argument its either the iteration number at which convergence was successfully
reached, or the iteration at which a problem was detected.

The user specifies when a solution should be considered sufficiently accurate by means of
a tolerance. An approximate eigenvalue is considered to be converged if the error estimate
associated to it is below the specified tolerance. The default value of the tolerance is 10~7 and
can be changed at run time with -eps_tol <tol> or inside the program with the function

EPSSetTolerances (EPS eps,PetscReal tol,PetscInt max_it);

The third parameter of this function allows the programmer to modify the maximum number
of iterations allowed to the solution algorithm, which can also be set via —~eps_max_it <its>.

Convergence Check. The error estimates used for the convergence test are based on the
residual norm, as discussed in §2.5.2. Most eigensolvers explicitly compute the residual of the
relevant eigenpairs during the iteration, but Krylov solvers use a cheap approximation instead.
This approximation is usually very accurate, but in some cases (e.g., when a shift-and-invert
spectral transformation is used) it may give too optimistic bounds. In such cases, the users can
force the computation of the residual with

EPSSetTrueResidual (EPS eps,PetscTruth trueres);
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Convergence criterion EPSConv Command line key  Error bound
Absolute EPS_CONV_ABS -eps_conv_abs [|7]]

Relative to eigenvalue EPS_CONV_EIG  -eps_conv_eig IEZIVARY
Relative to matrix norms EPS_CONV_NORM -eps_conv_norm I/ (IIA] + AN B

Table 2.6: Available possibilities for the convergence criterion.

or with ~eps_true_residual.
From the residual norm, the error bound can be computed in different ways, see Table 2.6.
This can be set via the corresponding command-line switch or with

EPSSetConvergenceTest (EPS eps,EPSConv conv) ;

The default is to use the criterion relative to the eigenvalue. For the criteria that involve matrix
norms, they can be provided by means of EPSSetMatrixNorms. Finally, a custom convergence
criterion may be established by specifying a user function (EPSSetConvergenceTestFunction).

Error estimates used internally by eigensolvers for checking convergence may be different
from the error bounds provided by EPSComputeRelativeError. At the end of the solution
process, error estimates are available via

EPSGetErrorEstimate (EPS eps,PetscInt j,PetscReal *errest);

Monitors. Error estimates can be displayed during execution of the solution algorithm, as a
way of monitoring convergence. There are several such monitors available. The user can activate
them via the options database (see examples below), or within the code with EPSMonitorSet.
By default, the solvers run silently without displaying information about the iteration. Also,
application programmers can provide their own routines to perform the monitoring by using
the function EPSMonitorSet.

The most basic monitor prints one approximate eigenvalue together with its associated error
estimate in each iteration. The shown eigenvalue is the first unconverged one.

$ ./ex9 -eps_nev 1 -eps_tol le-6 -eps_monitor

EPS nconv=0 first unconverged value (error) -0.0695109+2.10989i (2.38956768e-01)

EPS nconv=0 first unconverged value (error) -0.0231046+2.14902i (1.09212525e-01)

EPS nconv=0 first unconverged value (error) -0.000633399+2.14178i (2.67086904e-02)
EPS nconv=0 first unconverged value (error) 9.89074e-05+2.13924i (6.62097793e-03)
EPS nconv=0 first unconverged value (error) -0.000149404+2.13976i (1.53444214e-02)
EPS nconv=0 first unconverged value (error) 0.000183676+2.13939i (2.85521004e-03)
EPS nconv=0 first unconverged value (error) 0.000192479+2.13938i (9.97563492e-04)
EPS nconv=0 first unconverged value (error) 0.000192534+2.13938i (1.77259863e-04)
EPS nconv=0 first unconverged value (error) 0.000192557+2.13938i (2.82539990e-05)
EPS nconv=0 first unconverged value (error) 0.000192559+2.13938i (2.51440008e-06)
EPS nconv=2 first unconverged value (error) -0.671923+2.52712i (8.92724972e-05)
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Graphical monitoring (in an X display) is also available with -eps_monitor_draw. Figure
2.2 (left) shows the result of the following sample command line:
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Figure 2.2: Graphical output in SLEPc: default convergence monitor (left), simultaneous con-
vergence monitor for all eigenvalues (middle) and eigenvalue plot (right).

$ ./ex9 -n 200 -eps_nev 12 -eps_tol le-12 -eps_monitor_draw -draw_pause .2

Again, only the error estimate of one eigenvalue is drawn. The spikes in the last part of the
plot indicate convergence of one eigenvalue and switching to the next.

The two previously mentioned monitors have an alternative version (*_all) that processes
all eigenvalues instead of just the first one. Figure 2.2 (middle) corresponds to the same example
but with -eps_monitor_draw_all. Note that these variants have a side effect: they force the
computation of all error estimates even if the method would not normally do so.

A less verbose textual monitor is —eps_monitor_conv, which simply displays the iteration
number at which convergence takes places.

$ ./ex9 -n 200 -eps_nev 12 -eps_tol le-12 -eps_monitor_conv

56 EPS converged value (error) #0 4.64001e-06+2.13951i (9.82993423e-13)
56 EPS converged value (error) #1 4.64001e-06-2.13951i (9.82993423e-13)
65 EPS converged value (error) #2 -0.674926+2.52867i (4.58639033e-13)
65 EPS converged value (error) #3 -0.674926-2.52867i (4.58639033e-13)
65 EPS converged value (error) #4 -1.79963+3.03259i (5.24172024e-13)
65 EPS converged value (error) #5 -1.79963-3.03259i (5.24172024e-13)
69 EPS converged value (error) #6 -3.37383+3.55626i (3.17374477e-13)
69 EPS converged value (error) #7 -3.37383-3.55626i (3.17374477e-13)
70 EPS converged value (error) #8 -5.39714+4.03398i (4.08586434e-13)
70 EPS converged value (error) #9 -5.39714-4.03398i (4.08586434e-13)
77 EPS converged value (error) #10 -7.86906+4.41229i (9.08070733e-13)
77 EPS converged value (error) #11 -7.86906-4.41229i (9.08070733e-13)

Note that several monitors can be used at the same time.

Finally, the options database key -eps_plot_eigs instructs SLEPc to plot the computed
approximations of the eigenvalues at the end of the process. See Figure 2.2 (right) for an
example.
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2.6 Advanced Usage

This section includes the description of advanced features of the eigensolver object. Default
settings are appropriate for most applications and modification is unnecessary for normal usage.

2.6.1 Initial Guesses

In this subsection, we consider the possibility of providing initial guesses so that the eigensolver
can exploit this information to get the answer faster.

Most of the algorithms implemented in EPS iteratively build and improve a basis of a certain
subspace, which will eventually become an eigenspace corresponding to the wanted eigenvalues.
In some solvers such as those of Krylov type, this basis is constructed starting from an initial
vector, v, whereas in other solvers such as those of Davidson type, an arbitrary subspace can be
used to start the method. By default, EPS initializes the starting vector or the initial subspace
randomly. This default is a reasonable choice. However, it is also possible to supply an initial
subspace with the command

EPSSetInitialSpace(EPS eps,PetscInt n,Vec *is);

In some cases, a suitable initial space can accelerate convergence significantly, for instance when
the eigenvalue calculation is one of a sequence of closely related problems, where the eigenspace
of one problem is fed as the initial guess for the next problem.

Note that if the eigensolver supports only a single initial vector, but several guesses are
provided, then all except the first one will be discarded. One could still build a vector that
is rich in the directions of all guesses, by taking a linear combination of them, but this is less
effective than using a solver that considers all guesses as a subspace.

In cases where the eigensolver works with two bases, we can think of the second one as
containing approximations to the left eigenspace. If initial guesses for the left eigenvectors are
available, then one can provide them with

EPSSetInitialSpaceLeft (EPS eps,PetscInt n,Vec *is);

2.6.2 Dealing with Deflation Subspaces

In some applications, when solving an eigenvalue problem the user wishes to use a priori knowl-
edge about the solution. This is the case when an invariant subspace has already been computed
(e.g., in a previous EPSSolve call) or when a basis of the null-space is known.

Consider the following example. Given a graph G, with vertex set V and edges E, the
Laplacian matrix of GG is a sparse symmetric positive semidefinite matrix L with elements

dlv;) ifi=j
lij = -1 if €;; € E
0 otherwise
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where d(v;) is the degree of vertex v;. This matrix is singular since all row sums are equal to zero.
The constant vector is an eigenvector with zero eigenvalue, and if the graph is connected then all
other eigenvalues are positive. The so-called Fiedler vector is the eigenvector associated to the
smallest nonzero eigenvalue and can be used in heuristics for a number of graph manipulations
such as partitioning. One possible way of computing this vector with SLEPc is to instruct the
eigensolver to search for the smallest eigenvalue (with EPSSetWhichEigenpairs or by using a
spectral transformation as described in next chapter) but preventing it from computing the
already known eigenvalue. For this, the user must provide a basis for the invariant subspace
(in this case just vector [1,1,...,1]T) so that the eigensolver can deflate this subspace. This
process is very similar to what eigensolvers normally do with invariant subspaces associated
to eigenvalues as they converge. In other words, when a deflation space has been specified,
the eigensolver works with the restriction of the problem to the orthogonal complement of this
subspace.

The following function can be used to provide the EPS object with some basis vectors cor-
responding to a subspace that should be deflated during the solution process.

EPSSetDeflationSpace (EPS eps,PetscInt n,Vec *ds)

The value n indicates how many vectors are passed in argument ds.

The deflation space can be any subspace but typically it is most useful in the case of an
invariant subspace or a null-space. In any case, SLEPc internally checks to see if all (or part
of) the provided subspace is a null-space of the associated linear system (see §3.4.1). In this
case, this null-space is passed to the linear solver (see PETSc’s function KSPSetNullSpace) to
enable the solution of singular systems. In practice, this allows the computation of eigenvalues
of singular pencils (i.e., when A and B share a common null-space).

2.6.3 Orthogonalization

Internally, eigensolvers in EPS often need to orthogonalize a vector against a set of vectors (for
instance, when building an orthonormal basis of a Krylov subspace). This operation is carried
out typically by a Gram-Schmidt orthogonalization procedure. The user is able to adjust several
options related to this algorithm, although the default behavior is good for most cases, and we
strongly suggest not to change any of these settings. This topic is covered in detail in [STR-1].

2.6.4 Computing a Large Portion of the Spectrum

We now consider the case when the user requests a relatively large number of eigenpairs (the
related case of computing all eigenvalues in a given interval is addressed in §3.4.5). To fix
ideas, suppose that the problem size (the dimension of the matrix, denoted as n), is in the
order of 100,000’s, and the user wants nev to be approximately 5,000 (recall the notation of
EPSSetDimensions in §2.3).

The first comment is that for such large values of nev, the rule of thumb suggested in §2.3
for selecting the value of ncv (ncv > 2 - nev) may be inappropriate. For small values of nev,
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this rule of thumb is intended to provide the solver with a sufficiently large subspace. But for
large values of nev, it may be enough setting ncv to be slightly larger than nev.

The second thing to take into account has to do with costs, both in terms of storage and in
terms of computational effort. This issue is dependent on the particular eigensolver used, but
generally speaking the user can simplify to the following points:

1. It is necessary to store a basis of the subspace, that is, ncv vectors of length n.

2. A considerable part of the computation is devoted to orthogonalization of the basis vectors,
whose cost is roughly of order ncv? - n.

3. Within the eigensolution process, a projected eigenproblem of order ncv is built. At least
one dense matrix of this dimension has to be stored.

4. Solving the projected eigenproblem has a computational cost of order ncv®. Typically,

such problems need to be solved many times within the eigensolver iteration.

It is clear that a large value of ncv implies a high storage requirement (points 1 and 3,
especially point 1), and a high computational cost (points 2 and 4, especially point 2). However,
in a scenario of such big eigenproblems, it is customary to solve the problem in parallel with
many processors. In that case, it turns out that the basis vectors are stored in a distributed way
and the associated operations are parallelized, so that points 1 and 2 become benign as long as
sufficient processors are used. Then points 3 and 4 become really critical since in the current
SLEPc version the projected eigenproblem (and its associated operations) are not treated in
parallel. In conclusion, the user must be aware that using a large ncv value introduces a serial
step in the computation with high cost, that cannot be amortized by increasing the number of
processors.

From sLEPc 3.0.0, another parameter mpd has been introduced to alleviate this problem.
The name mpd stands for maximum projected dimension. The idea is to bound the size of the
projected eigenproblem so that steps 3 and 4 work with a dimension of mpd at most, while
steps 1 and 2 still work with a bigger dimension, up to ncv. Suppose we want to compute
nev=5000. Setting ncv=10000 or even ncv=6000 would be prohibitively expensive, for the
reasons explained above. But if we set e.g. mpd=600 then the overhead of steps 3 and 4 will be
considerably diminished. Of course, this reduces the potential of approximation at each outer
iteration of the algorithm, but with more iterations the same result should be obtained. The
benefits will be specially noticeable in the setting of parallel computation with many processors.

Note that it is not necessary to set both ncv and mpd. For instance, one can do

$ ./program -eps_nev 5000 -eps_mpd 600

2.6.5 Computing Interior Eigenvalues with Harmonic Extraction

The standard Rayleigh-Ritz projection procedure described in §2.1 is most appropriate for
approximating eigenvalues located at the periphery of the spectrum, especially those of largest
magnitude. Most eigensolvers in SLEPc are restarted, meaning that the projection is carried out
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repeatedly with increasingly good subspaces. An effective restarting mechanism, such as that
implemented in Krylov-Schur, improves the subspace by realizing a filtering effect that tries to
eliminate components in the direction of unwanted eigenvectors. In that way, it is possible to
compute eigenvalues located anywhere in the spectrum, even in its interior.

Even though in theory eigensolvers could be able to approximate interior eigenvalues with
a standard extraction technique, in practice convergence difficulties may arise that prevent
success. The problem comes from the property that Ritz values (the approximate eigenvalues
provided by the standard projection procedure) converge from the interior to the periphery
of the spectrum. That is, the Ritz values that stabilize first are those in the periphery, so
convergence of interior ones requires the previous convergence of all eigenvalues between them
and the periphery. Furthermore, this convergence behaviour usually implies that restarting
is carried out with bad approximations, so the restart is ineffective and global convergence is
severely damaged.

Harmonic projection is a variation that uses a target value, 7, around which the user wants to
compute eigenvalues (see, e.g., [Morgan and Zeng, 2006]). The theory establishes that harmonic
Ritz values converge in such a way that eigenvalues closest to the target stabilize first, and also
that no unconverged value is ever close to the target, so restarting is safe in this case. As
a conclusion, eigensolvers with harmonic extraction may be effective in computing interior
eigenvalues. Whether it works or not in practical cases depends on the particular distribution
of the spectrum.

In order to use harmonic extraction in SLEPc, it is necessary to indicate it explicitly, and
provide the target value as described in §2.3 (default is 7 = 0). The type of extraction can be
set with:

EPSSetExtraction(EPS eps,EPSExtraction extr);

Available possibilities are EPS_RITZ for standard projection and EPS_HARMONIC for harmonic
projection (other alternatives such as refined extraction are still experimental).
A command line example would be:

$ ./exb -m 45 -eps_harmonic -eps_target 0.8 -eps_ncv 60

The example computes the eigenvalue closest to 7 = 0.8 of a real non-symmetric matrix of order
1035. Note that ncv has been set to a larger value than would be necessary for computing the
largest magnitude eigenvalues. In general, users should expect a much slower convergence when
computing interior eigenvalues compared to extreme eigenvalues. Increasing the value of ncv
may help.

Currently, harmonic extraction is available in the default EPS solver, that is, Krylov-Schur,
and also in Arnoldi, GD, and JD.

2.6.6 Balancing for Non-Hermitian Problems

In problems where the matrix has a large norm, ||A||2, the roundoff errors introduced by the
eigensolver may be large. The goal of balancing is to apply a simple similarity transformation,
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DAD™, that keeps the eigenvalues unaltered but reduces the matrix norm, thus enhancing the
accuracy of the computed eigenpairs. Obviously, this makes sense only in the non-Hermitian
case. The matrix D is chosen to be diagonal, so balancing amounts to scaling the matrix rows
and columns appropriately.

In SLEPc, the matrix DAD™! is not formed explicitly. Instead, the operators of Table 3.2
are preceded by a multiplication by D! and followed by a multiplication by D. This allows
for balancing in the case of problems with an implicit matrix.

A simple and effective Krylov balancing technique, described in [Chen and Demmel, 2000],
is implemented in SLEPc. The user calls the following subroutine to activate it.

EPSSetBalance(EPS eps,EPSBalance bal,PetscInt its,PetscReal cutoff);

Two variants are available, one-sided and two-sided, and there is also the possibility for the
user to provide a pre-computed D matrix.




CHAPTER 3

ST: Spectral Transformation

The Spectral Transformation (ST) is the SLEPc object that encapsulates the functionality re-
quired for acceleration techniques based on the transformation of the spectrum. Most eigen-
solvers provided in EPS work by applying an operator to a set of vectors and this operator can
adopt different forms. The ST object handles all the different possibilities in a uniform way, so
that the solver can proceed without knowing which transformation has been selected. The type
of spectral transformation can be specified at run time, as well as several related options such
as which linear solver to use.

Despite being a rather unrelated concept, ST is also used to handle the preconditioners and
correction-equation solvers used in preconditioned eigensolvers such as GD and JD.

3.1 General Description

Spectral transformations are powerful tools for adjusting the way in which eigensolvers behave
when coping with a problem. The general strategy consists in transforming the original problem
into a new one in which eigenvalues are mapped to a new position while eigenvectors remain
unchanged. These transformations can be used with several goals in mind:

e Compute internal eigenvalues. In some applications, the eigenpairs of interest are not
the extreme ones (largest magnitude, smallest magnitude, rightmost, leftmost), but those
contained in a certain interval or those closest to a certain value of the complex plane.

e Accelerate convergence. Convergence properties typically depend on how close the eigen-
values are from each other. With some spectral transformations, difficult eigenvalue dis-
tributions can be remapped in a more favorable way in terms of convergence.
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e Handle some special situations. For instance, in generalized problems when matrix B is
singular, it may be necessary to use a spectral transformation.

SLEPc separates spectral transformations from solution methods so that any combination
of them can be specified by the user. To achieve this, most eigensolvers contained in EPS are
implemented in such a way that they are independent of which transformation has been selected
by the user (the exception are preconditioned solvers, see below). That is, the solver algorithm
has to work with a generic operator, whose actual form depends on the transformation used.
After convergence, eigenvalues are transformed back appropriately.

For technical details of the transformations described in this chapter, the interested user is
referred to [Ericsson and Ruhe, 1980], [Scott, 1982], [Nour-Omid et al., 1987], and [Meerbergen
et al., 1994].

Preconditioners. As explained in the previous chapter, EPS contains preconditioned eigen-
solvers such as GD or JD. These solvers either apply a preconditioner at a certain step of the
computation, or need to solve a correction equation with a preconditioned linear solver. One
of the main goals of these solvers is to achieve a similar effect as an inverse-based spectral
transformation such as shift-and-invert, but with less computational cost. For this reason, a
“preconditioner” spectral transformation has been included in the ST object. However, this is
just a convenient way of organizing the functionality, since this fake spectral transform can-
not be used with non-preconditioned eigensolvers, and conversely preconditioned eigensolvers
cannot be used with conventional spectral transformations.

3.2 Basic Usage

The ST module is the analog of some PETSc modules such as PC. The user does not usually
need to create a stand-alone ST object explicitly. Instead, every EPS object internally sets up an
associated ST. Therefore, the usual object management methods such as STCreate, STDestroy,
STView, STSetFromOptions, are not usually called by the user.

Although the ST context is hidden inside the EPS object, the user still has control over all
the options, by means of the command line, or also inside the program. To allow application
programmers to set any of the spectral transformation options directly within the code, the
following routine is provided to extract the ST context from the EPS object,

EPSGetST(EPS eps,ST *st);

After this, one is able to set any options associated to the ST object. For example, to set
the value of the shift, the following function is available

STSetShift (ST st,PetscScalar shift);

This can also be done with the command line option -st_shift <shift>. Note that the
argument shift is defined as a PetscScalar, and this means that complex shifts are not
allowed unless the complex version of SLEPc is used.
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Options
Spectral Transformation STType Name Operator
Shift of Origin STSHIFT shift B 'A+ol
Spectrum Folding STFOLD fold (B™'A—oI)?
Shift-and-invert STSINVERT sinvert (A-0oB)™'B
Generalized Cayley STCAYLEY  cayley (A—oB) " '(A+vB)
Preconditioner STPRECOND precond K '~ (A—oB)™*
Shell Transformation STSHELL shell user-defined

Table 3.1: Spectral transformations available in the ST package.

Other object operations are available, which are not usually called by the user. The most
important of such functions are STApply, which applies the operator to a vector, and STSetUp,
which prepares all the necessary data structures before the solution process starts. The term
“operator” refers to one of A, B~'A, A+ oI, ... depending on which kind of spectral transfor-
mation is being used.

3.3 Available Transformations

This section describes the spectral transformations that are provided in SLEPc. As in the case
of eigensolvers, the spectral transformation to be used can be specified procedurally or via the
command line. The application programmer can set it by means of the command

STSetType (ST st,STType type);

where type can be one of STSHIFT, STFOLD, STSINVERT, STCAYLEY, STPRECOND, or STSHELL.
The ST type can also be set with the command-line option -st_type followed by the name of
the method (see Table 3.1). The first five spectral transformations are described in detail in the
rest of this section. The last possibility, STSHELL, uses a specific, application-provided spectral
transformation. Section 6.4 describes how to implement one of these transformations.

The last column of Table 3.1 shows a general form of the operator used in each case. This
generic operator can adopt different particular forms depending on whether the eigenproblem
is standard or generalized, or whether the value of the shift (o) and anti-shift (v) is zero or not.
All the possible combinations are listed in Table 3.2.

The expressions shown in Table 3.2 are not built explicitly. Instead, the appropriate oper-
ations are carried out when applying the operator to a certain vector. The inverses imply the
solution of a linear system of equations that is managed by setting up an associated KSP object.
The user can control the behavior of this object by adjusting the appropriate options, as will
be illustrated with examples in §3.4.1.

Relation between Target and Shift. In all transformations except STSHIFT, there is a
direct connection between the target 7 (described in §2.3) and the shift o, as will be discussed
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ST Choice of o,  Standard problem Generalized problem
shift =0 A B~'A

oc#0 A+ol B 'A+4oI
fold c=0 A? (B~1A)?

oc#0 (A—ol)? (B™'A—oI)?
sinvert o =0 A7t A™'B

oc#0 (A—ol)™! (A-oB)™'B
cayley o #0,v=0 (A-oD)7tA (A—oB)7'A

c=0,v#0 IT+vA~! I+vA~'B

oc#0,v#0 (A—o)""(A+vI) (A—0oB) " (A+vB)
precond o =0 K lxA? K1t~ A?

o #0 K'~A-0o)' K'z=(A-0B)™

Table 3.2: Operators used in each spectral transformation mode.

below. The normal usage is that the user sets the target and then o is set to 7 automatically
(though it is still possible for the user to set a different value of the shift).

3.3.1 Shift of Origin

By default, no spectral transformation is performed. This is equivalent to a shift of origin
(STSHIFT) with o = 0, that is, the first line of Table 3.2. The solver works with the original
expressions of the eigenvalue problems,

Az = Az, (3.1)

for standard problems, and Ar = ABz for generalized ones. Note that this last equation is

actually treated internally as
B YAz = \z . (3.2)

When the eigensolver in EPS requests the application of the operator to a vector, a matrix-vector
multiplication by matrix A is carried out (in the standard case) or a matrix-vector multiplication
by matrix A followed by a linear system solve with coefficient matrix B (in the generalized case).
Note that in the last case, the operation will fail if matrix B is singular.

When the shift, o, is given a value different from the default, 0, the effect is to move the
whole spectrum by that exact quantity, o, which is called shift of origin. To achieve this, the
solver works with the shifted matrix, that is, the expressions it has to cope with are

(A4 oDz =0x , (3.3)

for standard problems, and
(B~ 'A+oDz =0z , (3.4)

for generalized ones. The important property that is used is that shifting does not alter the
eigenvectors and that it does change the eigenvalues in a simple known way, it shifts them by
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0=(A\-0)?

| A
A A O A3

Figure 3.1: Tllustration of the effect of spectrum folding.

o. In both the standard and the generalized problems, the following relation holds
0=X\+o0 . (3.5)

This means that after the solution process, the value o has to be subtracted from the computed
eigenvalues, 6, in order to retrieve the solution of the original problem, A. This is done by
means of the function STBackTransform, which does not need to be called directly by the user.

3.3.2 Spectrum Folding

Spectrum folding refers to a spectral transformation that involves squaring in addition to shift-
ing. The transformed problems to be addressed are the following

(A—ol)z =06z , (3.6)

for standard problems, and
(B7'A— oDz =0z , (3.7)

for generalized ones. In both cases, the following relation holds
0=(\—0)?. (3.8)

For real eigenvalues, the effect of this transformation is that the spectrum is folded around the
value of . Thus, eigenvalues that are closest to the shift become the smallest eigenvalues in
the folded spectrum, as illustrated in Figure 3.1. For this reason, spectrum folding is commonly
used in combination with eigensolvers that compute the smallest eigenvalues, for instance in
the context of electronic structure calculations, [Canning et al., 2000]. This transformation can
be an effective, low-cost alternative to shift-and-invert (explained below).
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Figure 3.2: The shift-and-invert spectral transformation.

3.3.3 Shift-and-invert

The shift-and-invert spectral transformation (STSINVERT) is used to enhance convergence of
eigenvalues in the neighborhood of a given value. In this case, the solver deals with the expres-
sions

(A—ol) 'z =0z , (3.9)
(A—0oB) 'Br =0z , (3.10)

for standard and generalized problems, respectively. This transformation is effective for finding
eigenvalues near o since the eigenvalues 6 of the operator that are largest in magnitude corre-
spond to the eigenvalues A of the original problem that are closest to the shift o in absolute
value, as illustrated in Figure 3.2 for an example with real eigenvalues. Once the wanted eigen-
values have been found, they may be transformed back to eigenvalues of the original problem.
Again, the eigenvectors remain unchanged. In this case, the relation between the eigenvalues
of both problems is

6=1/(A—o0) . (3.11)

Therefore, after the solution process, the operation to be performed in function STBackTrans-—
formis A = o + 1/6 for each of the computed eigenvalues.
This spectral transformation is used in the spectrum slicing technique, see §3.4.5.
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3.3.4 Cayley

The generalized Cayley transform (STCAYLEY) is defined from the expressions

(A—ol) " H(A+vD)x =0z , (3.12)
(A—oB) Y (A+vB)x =0z , (3.13)

for standard and generalized problems, respectively. Sometimes, the term Cayley transform is
applied for the particular case in which v = o. This is the default if v is not given a value
explicitly. The value of v (the anti-shift) can be set with the following function

STCayleySetAntishift (ST st,PetscScalar nu);

or in the command line with -st_cayley_antishift.

This transformation is mathematically equivalent to shift-and-invert and, therefore, it is
effective for finding eigenvalues near o as well. However, in some situations it is numerically ad-
vantageous with respect to shift-and-invert (see [Bai et al., 2000, §11.2], [Lehoucq and Salinger,
2001]).

In this case, the relation between the eigenvalues of both problems is

0=MN+v)/(A—0) . (3.14)

Therefore, after the solution process, the operation to be performed in function STBackTrans-—
formis A = (fo + v)/(6 — 1) for each of the computed eigenvalues.

3.3.5 Preconditioner

As mentioned in the introduction of this chapter, the special type STPRECOND is used for handling
preconditioners or preconditioned iterative linear solvers, which are used in the context of
preconditioned eigensolvers for expanding the subspace. For instance, in the GD solver the
so-called correction vector d; to be added to the subspace in each iteration is computed as

di = K'Py(A — 0,B)x;, (3.15)

where (6;, x;) is the current approximation of the sought-after eigenpair, and P; is a projector
involving x; and K~ 'z;. In the above expressions, K is a preconditioner matrix that is built
from A — 6;B. However, since #; changes at each iteration, which would force recomputation of
the preconditioner, we opt for using

K '~ (A-oB)™" (3.16)

Similarly, in the JD eigensolver the expansion of the subspace is carried out by solving a
correction equation similar to
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where the system is solved approximately with a preconditioned iterative linear solver. For
building the preconditioner of this linear system, the projectors I — z;x; are ignored, and again
it is not recomputed in each iteration. Therefore, the preconditioner is built as in expression
3.16 as well.

It should be clear from the previous discussion, that STPRECOND does not work in the same
way as the rest of spectral transformations. In particular, it is not intended to be used on
the basis of operator applications with STApply, and it does not rely on STBackTransform
either. It is rather a convenient mechanism for handling the preconditioner and linear solver
(see examples in §3.4.1). The expressions shown in Tables 3.1 and 3.2 are just a reference to
indicate from which matrix the preconditioner is built by default.

There is the possibility that the user overrides the default behaviour, that is, to explicitly
supply a matrix from which the preconditioner is to be built, with

STPrecondSetMatForPC(ST st,Mat mat);

Note that preconditioned eigensolvers in EPS select STPRECOND by default, so the user does
not need to specify it explicitly.

3.4 Advanced Usage

Using the ST object is very straightforward. However, when using spectral transformations many
things are happening behind the scenes, mainly the solution of linear systems of equations. The
user must be aware of what is going on in each case, so that it is possible to guide the solution
process in the most beneficial way. This section describes several advanced aspects that can
have a considerable impact on efficiency.

3.4.1 Solution of Linear Systems

In many of the cases shown in Table 3.2, the operator contains an inverted matrix, which means
that a linear system of equations must be solved whenever the application of the operator to a
vector is required. These cases are handled internally by means of a KSP object.

In the simplest case, a generalized problem is to be solved with a zero shift. Suppose you
run a program that solves a generalized eigenproblem, with default options:

$ ./program

In this case, the ST object associated to the EPS solver creates a KSP object whose coefficient
matrix is B. By default, this KSP object is set to use a direct solver', in particular an LU
factorization. However, default settings can be changed, as illustrated below.

The following command-line is equivalent to the previous one?:

$ ./program -st_ksp_type preonly -st_pc_type lu

IThis is the default since SLEPc 3.0.0.
2More precisely, the equivalent command would use the redundant PC in order to work in parallel.
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The two options specify the type of the linear solver and preconditioner to be used. The -st_
prefix indicates that the option corresponds to the linear solver within ST. The combination
preonly-+1lu instructs to use a direct solver (LU factorization, see PETSc’s documentation for
details), so this is the same as the default. Adding a new option changes the default behaviour,
for instance

$ ./program -st_ksp_type preonly -st_pc_type lu
-st_pc_factor_mat_solver_package mumps

In this case, an external linear solver package is used (MUMPS, see PETSc’s documentation for
other available packages). Note that an external package is required for a truly parallel direct
linear solver.

Instead of a direct linear solver, it is possible to use an iterative solver. This may be necessary
in some cases, specially for very large problems. However, the user is warned that using an
iterative linear solver makes the overall solution process less robust (see also the discussion of
preconditioned eigensolvers below). As an example, the command-line

$ ./program -st_ksp_type gmres -st_pc_type bjacobi -st_ksp_rtol 1le-8

selects the GMRES solver with block Jacobi preconditioning. In the case of iterative solvers, it
is important to use an appropriate tolerance, usually slightly more stringent for the linear solves
relative to the desired accuracy of the eigenvalue calculation (1078 in the example, compared
to 10~7 for the eigensolver).

Although the direct solver approach may seem too costly, note that the factorization is
only carried out at the beginning of the eigenvalue calculation and this cost is amortized in
each subsequent application of the operator. This is also the case for iterative methods with
preconditioners with high-cost set-up such as ILU.

The application programmer is able to set the desired linear systems solver options also
from within the code. In order to do this, first the context of the KSP object must be retrieved
with the following function

STGetKSP (ST st,KSP *ksp);

The above functionality is also applicable to the other spectral transformations. For instance,
for the shift-and-invert technique with 7 = 10 using BiCGStab+Jacobi:

$ ./program -st_type sinvert -eps_target 10 -st_ksp_type bcgs -st_pc_type jacobi

The shift-and-invert and Cayley transformations deserve special consideration. In these cases,
the coefficient matrix is not a simple matrix but an expression that can be explicitly constructed
or not, depending on the user’s choice. This issue is examined in detail in §3.4.2 below.

In many cases, especially if a shift-and-invert or Cayley transformation is being used, it-
erative methods may not be well suited for solving linear systems (because of the properties
of the coefficient matrix that can be indefinite and ill-conditioned). When using an iterative
linear solver, it may be helpful to run with the option -st_ksp_converged_reason, which will
display the number of iterations required in each operator application. In extreme cases, the
iterative solver fails, so EPSSolve aborts with an error
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[OJPETSC ERROR: KSP did not converge (reason=DIVERGED_ITS)!

If this happens, it is necessary to use a direct method for solving the linear systems, as explained
above.

The Case of Preconditioned Eigensolvers. The KSP object contained internally in ST is
also used for applying the preconditioner or solving the correction equation in preconditioned
eigensolvers.

The GD eigensolver employs just a preconditioner. Therefore, by default it sets the KSP
type to preonly (no other KSP is allowed) and the PC type to jacobi. The user may change
the preconditioner, for example as

$ ./ex5 -eps_type gd -st_pc_type asm

The JD eigensolver uses both an iterative linear solver and a preconditioner, so both KSP
and PC are meaningful in this case. The default is gmres+bjacobi. It is important to note that,
contrary to the ordinary spectral transformations where a direct linear solver is recommended,
in JD using an iterative linear solver is usually better than a direct solver. Indeed, the best
performance may be achieved with a few iterations of the linear solver (or a large tolerance).
For instance, the next example uses JD with GMRES+Jacobi limiting to 10 the number of
allowed iterations for the linear solver:

$ ./exb -eps_type jd -st_ksp_type gmres -st_pc_type jacobi -st_ksp_max_it 10

3.4.2 Explicit Computation of Coefficient Matrix

Three possibilities can be distinguished regarding the form of the coefficient matrix of the
linear systems of equations associated to the different spectral transformations. The possible
coefficient matrices are:

e Simple: B.
e Shifted: A —ol.
o Axpy: A—o0B.

The first case has already been described and presents no difficulty. In the other two cases,
there are three possible approaches:

“shell” To work with the corresponding expression without forming the matrix explicitly. This
is achieved by internally setting a matrix-free matrix with MatCreateShell.

“inplace” To build the coefficient matrix explicitly. This is done by means of a MatShift or
a MatAXPY operation, which overwrites matrix A with the corresponding expression. This
alteration of matrix A is reversed after the eigensolution process has finished.
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“copy” To build the matrix explicitly, as in the previous option, but using a working copy of
the matrix, that is, without modifying the original matrix A.

The default behavior is to build the coefficient matrix explicitly in a copy of A (option “copy”).
The user can change this as in the following example

$ ./program -st_type sinvert -eps_target 10 -st_ksp_type cg
-st_pc_type jacobi -st_matmode shell

As always, the procedural equivalent is also available for specifying this option in the code of
the program:

STSetMatMode (ST st,STMatMode mode) ;

The user must consider which approach is the most appropriate for the particular applica-
tion. The different options have advantages and drawbacks. The first approach is the simplest
one but severely restricts the number of possibilities available for solving the system, in partic-
ular most of the PETSc preconditioners would not be available, including direct methods. The
only preconditioners that can be used in this case are Jacobi (only if matrices A and B have
the operation MATOP_GET_DIAGONAL) or a user-defined one.

The second approach (“inplace”) can be much faster, specially in the generalized case.
A more important advantage of this approach is that, in this case, the linear system solver
can be combined with any of the preconditioners available in PETSc, including those which
need to access internal matrix data-structures such as ILU. The main drawback is that, in
the generalized problem, this approach probably makes sense only in the case that A and B
have the same sparse pattern, because otherwise the function MatAXPY might be inefficient. If
the user knows that the pattern is the same (or a subset), then this can be specified with the
function

STSetMatStructure (ST st,MatStructure str);

Note that when the value of the shift ¢ is very close to an eigenvalue, then the linear system
will be ill-conditioned and using iterative methods may be problematic. On the other hand,
in symmetric definite problems, the coefficient matrix will be indefinite whenever ¢ is a point
in the interior of the spectrum and in that case it is not possible to use a symmetric definite
factorization (Cholesky or ICC).

The third approach (“copy”) uses more memory but avoids a potential problem that could
appear in the “inplace” approach: the recovered matrix might be slightly different from the
original one (due to roundoff).

3.4.3 Preserving the Symmetry in Generalized Eigenproblems

As mentioned in §2.3, some eigensolvers can exploit symmetry and compute a solution for
Hermitian problems with less storage and/or computational cost than other methods. Also,
symmetric solvers can be more accurate in some cases. However, in the case of generalized
eigenvalue problems in which both A and B are symmetric, it happens that, due to the spectral
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Figure 3.3: Abstraction used by SLEPc solvers.

transformation, symmetry is lost since none of the transformed operators B~'A + oI, (A —
oB)~!B, etc. is symmetric (the same applies in the Hermitian case for complex matrices).

The solution proposed in SLEPc is based on selecting different kinds of inner products.
Currently, we have the following choice of inner products:

o Standard Hermitian inner product: (z,y) = z*y.
e B-inner product: (z,y)p = z*By.

The second one can be used for preserving the symmetry in symmetric definite generalized
problems, as described below. Note that (z,y) g is a genuine inner product only if B is symmetric
positive definite (for the case of symmetric positive semi-definite B see §3.4.4).

It can be shown that R™ with the (z,y)p inner product is isomorphic to the Euclidean
n-space R™ with the standard Hermitian inner product. This means that if we use (x,y)p
instead of the standard inner product, we are just changing the way lengths and angles are
measured, but otherwise all the algebraic properties are maintained and therefore algorithms
remain correct. What is interesting to observe is that the transformed operators such as B~14
or (A — oB)~!B are self-adjoint with respect to (x,%)5.

Internally, SLEPc operates with the abstraction illustrated in Figure 3.3. The operations
indicated by dashed arrows are implemented as virtual functions: IPInnerProduct and STAp-
ply. From the user point of view, all the above explanation is transparent. The only thing
he/she has to care about is to set the problem type appropriately with EPSSetProblemType
(see §2.3). In the case of the Cayley transform, SLEPc is using (z,y) a4+, 5 as the inner product
for preserving symmetry.

Using the B-inner product may be attractive also in the non-symmetric case (A non-
symmetric) as described in the next subsection.

Note that the above discussion is not directly applicable to STPRECOND and the precondi-
tioned eigensolvers, in the sense that the goal is not to recover the symmetry of the operator.
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Still, the B-inner product is also used in generalized symmetric-definite problems.

3.4.4 Purification of Eigenvectors

In generalized eigenproblems, the case of singular B deserves especial consideration. Note that
in this case the default spectral transformation (STSHIFT) cannot be used since B~! does not
exist.

In shift-and-invert with operator matrix T = (A — ¢B)~!B, when B is singular all the
eigenvectors that belong to finite eigenvalues are also eigenvectors of T' and belong to the range
of T, R(T). In this case, the bilinear form (z,y)p introduced in §3.4.3 is a semi-inner product
and ||z||p = v/(z,z)p is a semi-norm. As before, T is self-adjoint with respect to this inner
product since BT = T*B. Also, (x,y)p is a true inner product on R(T).

The implication of all this is that, for singular B, if the B-inner product is used through-
out the eigensolver then, assuming that the initial vector has been forced to lie in R(T'), the
computed eigenvectors should be correct, i.e., they should belong to R(T') as well. Neverthe-
less, finite precision arithmetic spoils this nice picture, and computed eigenvectors are easily
corrupted by components of vectors in the null-space of B. Additional computation is required
for achieving the desired property. This is usually referred to as eigenvector purification.

Although more elaborate purification strategies have been proposed (usually trying to reduce
the computational effort, see [Nour-Omid et al., 1987] and [Meerbergen and Spence, 1997]), the
approach in SLEPc is simply to explicitly force the initial vector in the range of T', with vy < T'vy,
as well as the computed eigenvectors at the end, x; < Tx;.

A final comment is that eigenvector corruption happens also in the non-symmetric case.
If A is non-symmetric but B is symmetric positive semi-definite, then the scheme presented
above (B-inner product together with purification) can still be applied and is generally more
successful than the straightforward approach with the standard inner product. For using this
scheme in SLEPc, the user has to specify the special problem type EPS_PGNHEP, see Table 2.1.

3.4.5 Spectrum Slicing

In the context of symmetric-definite generalized eigenvalue problems (EPS_GHEP) it is often re-
quired to compute all eigenvalues contained in a given interval [a, b]. This poses some difficulties,
such as:

e The number of eigenvalues in the interval is not known a priori.

e There might be many eigenvalues, in some applications a significant percentage of the
spectrum (20%, say).

o We must make certain that no eigenvalues are missed, and in particular all eigenvalues
must be computed with their correct multiplicity.

e In some applications, the interval is open in one end, i.e., either a or b can be infinite.
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One possible strategy to solve this problem is to sweep the interval from one end to the other,
computing chunks of eigenvalues with a spectral transformation that updates the shift dynam-
ically. This is generally referred to as spectrum slicing. The method implemented in SLEPc is
similar to that proposed by Grimes et al. [1994], where inertia information is used to validate
sub-intervals. Given a symmetric-indefinite triangular factorization

A—0oB=LDL", (3.18)

by Sylvester’s law of inertia we know that the number of eigenvalues on the left of o is equal
to the number of negative eigenvalues of D,

v(A—oB) =v(D). (3.19)

The SLEPc interface hides all the complications of the algorithm. However, the user must
be aware of all the restrictions for this technique to be employed:

e This is currently implemented only in Krylov-Schur.

e The method is based on shift-and-invert, so either STSINVERT or STCAYLEY must be used
(STSINVERT is selected by default). Furthermore, direct linear solvers are required.

o The direct linear solver must provide the matrix inertia (see PETSc’s MatGetInertia). In
particular, a symmetric factorization must be used (cholesky).

An example command-line that sets up all the required options is:
$ ./ex13 -eps_interval 0.4,0.8 -st_ksp_type preonly -st_pc_type cholesky

Note that PETSc’s Cholesky factorization is not parallel, so for doing spectrum slicing in
parallel it is required to use an external solver that supports inertia, e.g., MUMPS (see §3.4.1
on how to use external linear solvers):

$ ./ex13 -eps_interval 0.4,0.8 -st_ksp_type preonly -st_pc_type cholesky
-st_pc_factor_mat_solver_package mumps -mat_mumps_icntl_13 1

The last option is required by MUMPS to compute the inertia.
Apart from the above recommendations, the following must be taken into account:

e The parameters nev and ncv explained in the previous chapter (see EPSSetDimensions)
change their meaning in this context: ncv cannot be given by the user but is determined
internally, and nev represents in this case the number of eigenvalues that will be computed
in each chunk.

e Apart from nev, the user can tune the computation by setting different values of max_it
(see EPSSetTolerances).




CHAPTER 4:

SVD: Singular Value Decomposition

The Singular Value Decomposition (SVD) solver object can be used for computing a partial
SVD of a rectangular matrix. It provides uniform and efficient access to several specific SVD
solvers included in SLEPc, and also gives the possibility to compute the decomposition via the
eigensolvers provided in the EPS package.

In many aspects, the user interface of SVD resembles that of EPS. For this reason, this chapter
and chapter 2 have a very similar structure.

4.1 The Singular Value Decomposition

In this section, some basic concepts about the singular value decomposition are presented. The
objective is to set up the notation and also to justify some of the solution approaches, partic-
ularly those based on the EPS object. As in the case of eigensolvers, some of the implemented
methods are described in detail in the SLEPc technical reports.

For background material about the SVD, see for instance [Bai et al., 2000, ch. 6]. Many
other books such as [Bjorck, 1996] or [Hansen, 1998] present the SVD from the perspective of its
application to the solution of least squares problems and other related linear algebra problems.

The singular value decomposition (SVD) of an m x n matrix A can be written as

A=USV*, (4.1)
where U = [uy,...,uy] is an m X m unitary matrix (U*U = 1I), V = [v1,...,v,] isan n x n
unitary matrix (V*V =1TI), and ¥ is an m x n diagonal matrix with diagonal entries %;; = o;
fori = 1,...,min{m,n}. If A is real, U and V are real and orthogonal. The vectors u; are

called the left singular vectors, the v; are the right singular vectors, and the o; are the singular
values.
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V*

Figure 4.1: Scheme of the thin SVD of a rectangular matrix A.

In the following, we will assume that m > n. If m < n then A should be replaced by A*
(note that in SLEPc this is done transparently as described later in this chapter and the user
need not worry about this). In the case that m > n, the top n rows of ¥ contain diag(oq, ..., 0p,)
and its bottom m — n rows are zero. The relation 4.1 may also be written as AV = UX, or

Avi:uiai, 7::1,...,717 (42)

and also as A*U = VX*, or
A'u; =vioy, 1=1,....,n, (4.3)
A'u; =0, i=n+1,...,m. (4.4)

The last left singular vectors corresponding to Eq. 4.4 are often not computed, especially if
m > n. In that case, the resulting factorization is sometimes called the thin SVD, A = U, 2, V',
and is depicted in Figure 4.1. This factorization can also be written as

A= "] (4.5)
i=1

Each (o, u;,v;) is called a singular triplet.

The singular values are real and nonnegative, 01 > 092 > ... > 0, > 0pp1 = ... =0 =0,
where r = rank(A). It can be shown that {uj,...,u,} span the range of A, R(A), whereas
{VUr41,--.,vs} span the null space of A, N'(A).

If the zero singular values are dropped from the sum in Eq. 4.5, the resulting factorization,
A=3%""_ ouv}, is called the compact SVD, A = U, X, V,*.

In the case of a very large and sparse A, it is usual to compute only a subset of k < r
singular triplets. We will refer to this decomposition as the truncated SVD of A. It can be
shown that the matrix Ay = UpX;V)" is the best rank-£ approximation to matrix A, in the
least squares sense.

In general, one can take an arbitrary subset of the summands in Eq. 4.5, and the resulting
factorization is called the partial SVD of A. As described later in this chapter, SLEPc allows the
computation of a partial SVD corresponding to either the k largest or smallest singular triplets.
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Equivalent Eigenvalue Problems. It is possible to formulate the problem of computing the
singular triplets of a matrix A as an eigenvalue problem involving a Hermitian matrix related
to A. There are two possible ways of achieving this:

1. With the cross product matrix, either A*A or AA*.
2. With the cyclic matrix, H(A) = [ 0. 4].

In SLEPc, the computation of the SVD is always based on one of these two alternatives, either
by passing one of these matrices to an EPS object or by performing the computation implicitly.
By pre-multiplying Eq. 4.2 by A* and then using Eq. 4.3, the following relation results

A* Av; = otv; , (4.6)

that is, the v; are the eigenvectors of matrix A* A with corresponding eigenvalues equal to o2.
Note that after computing v; the corresponding left singular vector, w;, is readily available
through Eq. 4.2 with just a matrix-vector product, u; = U%szu

Alternatively, one could compute first the left vectors and then the right ones. For this,
pre-multiply Eq. 4.3 by A and then use Eq. 4.2 to get

In this case, the right singular vectors are obtained as v; = U%A*uz

The two approaches represented in Eqgs. 4.6 and 4.7 are very similar. Note however that
A*A is a square matrix of order n whereas AA* is of order m. In cases where m > n, the
computational effort will favor the A*A approach. On the other hand, the eigenproblem 4.6
has n — r zero eigenvalues and the eigenproblem 4.7 has m — r zero eigenvalues. Therefore,
continuing with the assumption that m > n, even in the full rank case the AA* approach may
have a large null space resulting in difficulties if the smallest singular values are sought. In
SLEPc, this will be referred to as the cross product approach and will use whichever matrix is
smaller, either A*A or AA*.

Computing the SVD via the cross product approach may be adequate for determining the
largest singular triplets of A, but the loss of accuracy can be severe for the smallest singular
triplets. The cyclic matrix approach is an alternative that avoids this problem, but at the
expense of significantly increasing the cost of the computation. Consider the eigendecomposition
of

0 A
which is a Hermitian matrix of order (m +n). It can be shown that +o; is a pair of eigenvalues
of H(A) for ¢ = 1,...,r and the other m 4+ n — 2r eigenvalues are zero. The unit eigenvectors

1

associated to +o; are 7 [

o ] Thus it is possible to extract the singular values and the left
and right singular vectors of A directly from the eigenvalues and eigenvectors of H(A). Note
that in this case singular values are not squared, and therefore the computed values will be
more accurate. The drawback in this case is that small eigenvalues are located in the interior

of the spectrum.
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SVD svd; /* SVD solver context */
Mat A; /* problem matrix */
Vec u, v; /* singular vectors */
PetscReal sigma; /* singular value x/

o

PetscInt j, nconv;
PetscReal error;

SVDCreate( PETSC_COMM_WORLD, &svd );
SVDSetOperator( svd, A );
10 SVDSetFromOptions( svd );
SVDSolve( svd );
SVDGetConverged( svd, &nconv );
for (j=0; j<nconv; j++) {
SVDGetSingularTriplet( svd, j, &sigma, u, v );
15 SVDComputeRelativeError( svd, j, &error );

}
SVDDestroy( svd );

Figure 4.2: Example code for basic solution with SVD.

4.2 Basic Usage

From the perspective of the user interface, the SVD package is very similar to EPS, with some
differences that will be highlighted shortly.

The basic steps for computing a partial SVD with SLEPc are illustrated in Figure 4.2. The
steps are more or less the same as those described in chapter 2 for the eigenvalue problem.
First, the solver context is created with SVDCreate. Then the problem matrix has to be spec-
ified with SVDSetOperator. Then, a call to SVDSolve invokes the actual solver. After that,
SVDGetConverged is used to determine how many solutions have been computed, which are
retrieved with SVDGetSingularTriplet. Finally, SVDDestroy cleans up everything.

If one compares this example code with the EPS example in Figure 2.1, the most outstanding
differences are the following:

e The singular value is a PetscReal, not a PetscScalar.

e Each singular vector is defined with a single Vec object, not two as was the case for
eigenvectors.

e Function SVDSetOperator only admits one Mat argument.
e There is no equivalent to EPSSetProblemType.

The reason for the last two differences is that SLEPc does not currently support different kinds
of SVD problems. This may change in future versions if some generalization of the SVD such
as the GSVD is added.
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4.3 Defining the Problem

Defining the problem consists in specifying the problem matrix, A, and the portion of the
spectrum to be computed. In the case of the SVD, the number of possibilities will be much
more limited than in the case of eigenproblems.

The problem matrix is provided with the following function

SVDSetOperator (SVD svd,Mat A);

where A can be any matrix, not necessarily square, stored in any allowed PETSc format including
the matrix-free mechanism (see §6.2 for a detailed discussion).

It is important to note that all SVD solvers in SLEPc make use of both A and A*, as
suggested by the description in §4.1. A* is not explicitly passed as an argument to SVDSet-
Operator, therefore it will have to stem from A. There are two possibilities for this: either A
is transposed explicitly and A* is created as a distinct matrix, or A* is handled implicitly via
MatMultTranspose operations whenever a matrix-vector product is required in the algorithm.
The default is to build A* explicitly, but this behavior can be changed with

SVDSetTransposeMode (SVD svd,SVDTransposeMode mode) ;

In §4.1, it was mentioned that in SLEPc the cross product approach chooses the smallest of
the two possible cases A*A or AA*, that is, A*A is used if A is a tall, thin matrix (m > n),
and AA* is used if A is a fat, short matrix (m < n). In fact, what SLEPc does internally is
that if m < n the roles of A and A* are reversed. This is equivalent to transposing all the
SVD factorization, so left singular vectors become right singular vectors and vice versa. This is
actually done in all singular value solvers, not only the cross product approach. The objective
is to simplify the number of cases to be treated internally by SLEPc, as well as to reduce the
computational cost in some situations. Note that this is done transparently and the user need
not worry about transposing the matrix, only to indicate how the transpose has to be handled,
as explained above.

The user can specify how many singular values and vectors to compute. The default is to
compute only one singular triplet. The function

SVDSetDimensions (EPS eps,PetscInt nsv,PetscInt ncv,PetscInt mpd);

allows the specification of the number of singular values to compute, nsv. The second argument
can be set to prescribe the number of column vectors to be used by the solution algorithm, ncv,
that is, the largest dimension of the working subspace. These two parameters can also be set
at run time with the options -svd_nsv and -svd_ncv. For example, the command line

$ ./program -svd_nsv 10 -svd_ncv 24

requests 10 singular values and instructs to use 24 column vectors. Note that ncv must be at
least equal to nsv, although in general it is recommended (depending on the method) to work
with a larger subspace, for instance ncv > 2 - nsv or even more. As in the case of the EPS
object, the last argument, mpd, can be used to limit the maximum dimension of the projected
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SVDWhich Command line key  Sorting criterion
SVD_LARGEST -svd_largest Largeﬁ;a
SVD_SMALLEST -svd_smallest Smallest o

Table 4.1: Available possibilities for selection of the singular values of interest.

problem, as discussed in §2.6.4. Using this parameter is especially important in the case that a
large number of singular values are requested.

For the selection of the portion of the spectrum of interest, there are only two possibilities in
the case of SVD: largest and smallest singular values, see Table 4.1. The default is to compute
the largest ones, but this can be changed with

SVDSetWhichSingularTriplets(SVD svd,SVDWhich which);

which can also be specified at the command line. This criterion is used both for configuring
how the algorithm seeks singular values and also for sorting the computed values. In contrast
to the case of EPS, computing singular values located in the interior part of the spectrum is
difficult, the only possibility is to use an EPS object combined with a spectral transformation
(this possibility is explained in detail in the next section). Note that in this case, the value of
which applies to the transformed spectrum.

4.4 Selecting the SVD Solver

The available methods for computing the partial SVD are shown in Table 4.2. These methods
can be classified in the following three groups:

e Solvers based on EPS. These solvers set up an EPS object internally, thus using the available
eigensolvers for solving the SVD problem. The two possible approaches in this case are
the cross product matrix and the cyclic matrix, as described in §4.1.

e Specific SVD solvers. These are typically eigensolvers that have been adapted algorithmi-
cally to exploit the structure of the SVD problem. There are currently two solvers in this
category: Lanczos and thick-restart Lanczos. A detailed description of these methods can
be found in the SLEPc Technical Reports.

e The LAPACK solver. This is an interface to some LAPACK routines, analog of those in
the case of eigenproblems. These routines operate in dense mode with only one processor
and therefore are suitable only for moderate size problems. This solver should be used
only for debugging purposes.

The default solver is the one that uses the cross product matrix (cross), usually the fastest
and most memory-efficient approach. See a more detailed explanation below.

The solution method can be specified procedurally or via the command line. The application
programmer can set it by means of the command
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Options
Method SVDType Database Name
Cross Product SVDCROSS cross
Cyclic Matrix SVDCYCLIC cyclic
Lanczos SVDLANCZO0S lanczos
Thick-restart Lanczos SVDTRLANCZ0S trlanczos
LAPACK solver SVDLAPACK lapack

Table 4.2: List of solvers available in the SVD module.

SVDSetType (SVD svd,SVDType method) ;

while the user writes the options database command -svd_type followed by the name of the
method (see Table 4.2).

The EPS-based solvers deserve some additional comments. These SVD solvers work by
creating an EPS object internally and setting up an eigenproblem of type EPS_HEP. These solvers
implement the cross product matrix approach, Eq. 4.6, and the cyclic matrix approach, Eq. 4.8.
Therefore, the operator matrix associated to the EPS object will be A* A in the case of the cross
solver and H(A) in the case of the cyclic solver.

In the case of the cross solver, the matrix A*A is not built explicitly, since sparsity would
be lost. Instead, a shell matrix is created internally in the SVD object and passed to the EPS
object. In the case of the cyclic solver, the situation is different since H(A) is still a sparse
matrix. SLEPc gives the possibility to handle it implicitly as a shell matrix (the default), or
to create H(A) explicitly, that is, storing its elements in a distinct matrix. The function for
setting this option is

SVDCyclicSetExplicitMatrix(SVD svd,PetscTruth explicit);

The EPS object associated to the cross and cyclic SVD solvers is created with a set of
reasonable default parameters. However, it may sometimes be necessary to change some of the
EPS options such as the eigensolver. To allow application programmers to set any of the EPS
options directly within the code, the following routines are provided to extract the EPS context
from the SVD object,

SVDCrossGetEPS(SVD svd,EPS *eps);
SVDCyclicGetEPS(SVD svd,EPS *eps);

A more convenient way of changing EPS options is through the command-line. This is achieved
simply by prefixing the EPS options with -svd_ as in the following example:

$ ./program -svd_type cross -svd_eps_type gd

At this point, one may consider changing also the options of the ST object associated to the
EPS object in cross and cyclic SVD solvers, for example to compute singular values located
at the interior of the spectrum via a shift-and-invert transformation. This is indeed possible,
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but some considerations have to be taken into account. When A*A or H(A) are managed as
shell matrices, then the potential of the spectral transformation is limited seriously, because
some of the required operations will not be defined (this is discussed briefly in §6.2 and §3.4.2).
Therefore, computing interior singular values is more likely to be successful if using the cyclic
solver with explicit H(A) matrix. To illustrate this, here is a complicated command-line example
for computing singular values close to 12.0:

$ ./program -svd_type cyclic -svd_cyclic_explicitmatrix -svd_st_type sinvert
-svd_eps_target 12.0 -svd_st_ksp_type preonly -svd_st_pc_type lu

4.5 Retrieving the Solution

Once the call to SVDSolve is complete, all the data associated to the computed partial SVD is
kept internally in the SVD object. This information can be obtained by the calling program by
means of a set of functions described below.

As in the case of eigenproblems, the number of computed singular triplets depends on the
convergence and, therefore, it may be different from the number of solutions requested by the
user. So the first task is to find out how many solutions are available, with

SVDGetConverged (SVD svd,PetscInt *nconv) ;

Usually, the number of converged solutions, nconv, will be equal to nsv, but in general it
will be a number ranging from 0 to ncv (here, nsv and ncv are the arguments of function
SVDSetDimensions).

Normally, the user is interested in the singular values only, or the complete singular triplets.
The function

SVDGetSingularTriplet (SVD svd,PetscInt j,PetscReal *sigma,Vec u,Vec v);

returns the j-th computed singular triplet, (o}, u;,v;), where both u; and v; are normalized to
have unit norm. Typically, this function is called inside a loop for each value of j from 0 to
nconv—1. Note that singular values are ordered according to the same criterion specified with
function SVDSetWhichSingularTriplets for selecting the portion of the spectrum of interest.
In some applications, it may be enough to compute only the right singular vectors. This is
especially important in cases in which memory requirements are critical (remember that both
Ui and V}, are dense matrices, and U, may require much more storage than V, see Figure 4.1).
In SLEPc, there is no general option for specifying this, but the default behavior of some solvers
is to compute only right vectors and allocate/compute left vectors only in the case that the user
requests them. This is done in the cross solver and in some special variants of other solvers
such as one-sided Lanczos (consult the SLEPc technical reports for specific solver options).

Reliability of the Computed Solution. In SVD computations, a-posteriori error bounds
are much the same as in the case of Hermitian eigenproblems, due to the equivalence discussed
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in §4.1. The residual vector is defined in terms of the cyclic matrix, H(A), so its norm is

1
Irll2 = (147 — Gall + | A*a — 50]3) * , (4.9)

where &, @ and © represent any of the nconv computed singular triplets delivered by SVD-
GetSingularTriplet.
Given the above definition, the following relation holds

lo—a[ < |rllz , (4.10)
where o is an exact singular value. The following SLEPc function
SVDComputeResidualNorms (SVD svd,PetscInt j,PetscReal *norml,PetscReal *norm?2)

computes the two partial 2-norms separately, |A0 — 4|l and ||A*@ — 60|2. The relative error
can be obtained as ||r||2/ (6v/2) with the following function:

SVDComputeRelativeError (SVD svd,PetscInt j,PetscReal *error);

Controlling and Monitoring Convergence. Similarly to the case of eigensolvers, in SVD
the number of iterations carried out by the solver can be determined with SVDGetItera-
tionNumber, and the tolerance and maximum number of iterations can be set with SVDSet-
Tolerances. Also, convergence can be monitored with command-line keys -svd_monitor,
-svd_monitor_all, -svd_monitor_conv, -svd_monitor_draw, or -svd_monitor_draw_all.
See §2.5.3 for additional details.
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CHAPTER 5

QEP: Quadratic Eigenvalue Problems

The Quadratic Eigenvalue Problem (QEP) solver object is intended for addressing polynomial
eigenproblems of degree 2. Apart from specific quadratic solvers, it provides the possibility of
reducing the problem to a generalized eigenvalue problem via linearization, then solving it with
the EPS package.

As in the case of SVD, the user interface of QEP is very similar to EPS. We highlight the main
differences both in usage and theoretical properties.

5.1 Overview of Quadratic Eigenproblems

In this section, we review some basic properties of quadratic eigenvalue problems. The main
goal is to set up the notation as well as to describe the linearization approaches that will
be employed for solving via the EPS object. For additional background material about the
quadratic eigenproblem, the reader is referred to [Tisseur and Meerbergen, 2001]. As always,
some details of the implemented methods can be found in the SLEPc technical reports.

In many applications, e.g., problems arising from second-order differential equations such as
the analysis of damped vibrating systems, the eigenproblem to be solved is quadratic,

(MM +X\C + K)z =0, (5.1)

where M,C, K € C"*™ are the coefficients of a matrix polynomial of degree 2, A € C is the
eigenvalue and x € C" is the eigenvector. As in the case of linear eigenproblems, the eigenvalues
and eigenvectors can be complex even in the case that all three matrices are real.

It is important to point out some outstanding differences with respect to the linear eigen-
problem. In the quadratic eigenproblem, the number of eigenvalues is 2n, and the corresponding
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eigenvectors do not form a linearly independent set. If M is singular, some eigenvalues are in-
finite. Even when the three matrices are symmetric and positive definite, there is no guarantee
that the eigenvalues are real, but still methods can exploit symmetry to some extent. Further-
more, numerical difficulties are more likely than in the linear case, so the computed solution
can sometimes be untrustworthy.

If Eq. 5.1 is written as Q(\)z = 0, where @ is the matrix polynomial, then multiplication
by A72 results in R(A~!)z = 0, where R is a matrix polynomial with the coefficients in the
reverse order. In other words, if a method is available for computing the largest eigenvalues,
then reversing the roles of M and K results in the computation of the smallest eigenvalues.
In general, it is also possible to formulate different spectral transformations for computing
eigenvalues closest to a given target.

Problem Types. As in the case of linear eigenproblems, there are some particular properties
of the coefficient matrices that confer a certain structure to the quadratic eigenproblem, e.g.,
symmetry of the spectrum with respect to the real or imaginary axes. These structures are
important as long as the solvers are able to exploit them.

e Hermitian (symmetric) problems, when M, C, K are all Hermitian (symmetric). Eigen-
values are real or come in complex conjugate pairs. Furthermore, if M > 0 and C, K >0
then the system is stable, i.e., Re(A) < 0.

e Hyperbolic problems, a particular class of Hermitian problems where M > 0 and (2*Cx)? >
4(z*Mz)(z* Kz) for all nonzero x € C". All eigenvalues are real, and form two separate
groups of n eigenvalues, each of them having linearly independent eigenvectors.

e Overdamped problems, a specialized type of hyperbolic problems, where C' > 0 and
K > 0. The eigenvalues are non-positive.

e Gyroscopic problems, when M, K are Hermitian, M > 0, and C is skew-Hermitian,
C = —C~. The spectrum is symmetric with respect to the imaginary axis, and in the real
case, it has a Hamiltonian structure, i.e., eigenvalues come in quadruples (A, A, =, —\).

Equivalent Eigenvalue Problems. It is possible to transform the quadratic eigenvalue
problem to a linear generalized eigenproblem Az = ABz (linearization) by doubling the order
of the system, i.e., A, B € C?"*?", There are many ways of doing this, and all of them are
based on defining the eigenvector of the linear problem as

. { - } , (5.2)

or a similar way. Below, we show some of the most common linearizations.

e Non-symmetric linearizations. The resulting matrix pencil has no particular structure.

N1: [g{ IC}—)\{é J\H (5.3)
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N2: {_OK ?.]—)\[? ]‘04] (5.4)

e Symmetric linearizations. If M, C, and K are all symmetric (Hermitian), the resulting
matrix pencil is symmetric (Hermitian), although indefinite.

S1: {_OK :[C(}—A{_OK 1\04} (5.5)
S Y (5

e Hamiltonian linearizations. If the quadratic eigenproblem is Hamiltonian, one of the
matrices is Hamiltonian and the other is skew-Hamiltonian. The first form (H1) is rec-
ommended when M is singular, whereas the second form (H2) is recommended when K
is singular.

HI: [g IHA{_(J)W Iﬂ (5.7)
H2: H} _OK}—AHf ]\3] (5.8)

In SLEPc, some solvers of the QEP class are based on using one of the above linearizations
for solving the quadratic eigenproblem. These solvers make use of linear eigensolvers from the
EPS package.

We could also consider the reversed forms, e.g., the reversed form of N2 is
-C -M 1 K 0

] [ } , (5.9)

I o | x|l o I

N2-R:
R [ :

which is equivalent to the form N1 for the problem R(A~!)z = 0. These reversed forms are not
implemented in SLEPc, but the user can use them simply by reversing the roles of M and K,
and considering the reciprocals of the computed eigenvalues.

5.2 Basic Usage

The user interface of the QEP package is very similar to EPS. For basic usage, the only noteworthy
difference is that three matrices have to be supplied.

A basic example code for solving a quadratic eigenproblem with QEP is shown in Figure 5.1.
The required steps are the same as those described in chapter 2 for the linear eigenproblem.
As always, the solver context is created with QEPCreate. The three problem matrices are
provided with QEPSetOperators, and the problem type is specified with QEPSetProblemType.
Calling QEPSetFromOptions allows the user to set up various options through the command
line. The call to QEPSolve invokes the actual solver. Then, the solution is retrieved with
QEPGetConverged and QEPGetEigenpair. Finally, QEPDestroy destroys the object.
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QEP qep; /* eigensolver context */

Mat M, C, K; /* matrices of the QEP */

Vec Xr, Xi; /* eigenvector, x */

PetscScalar kr, ki; /* eigenvalue, k */
5 PetsclInt j, nconv;

PetscReal error;

QEPCreate( PETSC_COMM_WORLD, &gep );
QEPSetOperators( gep, M, C, K );

10 QEPSetProblemType( qgep, QEP_GENERAL );
QEPSetFromOptions( gep );
QEPSolve( qep );
QEPGetConverged( gep, &nconv ) ;
for (j=0; j<nconv; j++) {

15 QEPGetEigenpair( qgep, j, &kr, &ki, xr, xi );

QEPComputeRelativeError( qep, j, &error );

}
QEPDestroy( qep );

Figure 5.1: Example code for basic solution with QEP.

5.3 Defining the Problem

As mentioned in §5.1, it is possible to distinguish among different problem types. The problem
types currently supported for QEP are listed in Table 5.1. The goal when choosing an appropriate
problem type is to let the solver exploit the underlying structure, in order to possibly compute
the solution more accurately with less floating-point operations. When in doubt, use the default
problem type (QEP_GENERAL).

The problem type can be specified at run time with the corresponding command line key
or, more usually, within the program with the function

EPSSetProblemType (QEP eps,QEPProblemType type);

Apart from the problem type, the definition of the problem is completed with the number
and location of the eigenvalues to compute. This is done very much like in EPS, but with minor
differences.

Problem Type QEPProblemType Command line key

General QEP_GENERAL -gep_general
Hermitian QEP_HERMITIAN -qep_hermitian
Gyroscopic QEP_GYROSCOPIC -gep_gyroscopic

Table 5.1: Problem types considered in QEP.
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5.4. Selecting the Solver

QEPWhich

Command line key

Sorting criterion

QEP_LARGEST_MAGNITUDE
QEP_SMALLEST_MAGNITUDE
QEP_LARGEST_REAL
QEP_SMALLEST_REAL
QEP_LARGEST_IMAGINARY
QEP_SMALLEST_IMAGINARY

-gep_largest_magnitude
-gep_smallest_magnitude
-gep_largest_real
-gep_smallest_real
-gep_largest_imaginary
-gep_smallest_imaginary

Largest ||
Smallest |A|
Largest Re(A
Smallest Re(
Largest Im(A
Smallest Im(

O

!

)1

>

Table 5.2: Available possibilities for selection of the eigenvalues of interest in QEP.

The number of eigenvalues (and eigenvectors) to compute, nev, is specified with the function
QEPSetDimensions (QEP qep,PetscInt nev,PetscInt ncv,PetscInt mpd) ;

The default is to compute only one. This function also allows control over the dimension of
the subspaces used internally. The second argument, ncv, is the number of column vectors to
be used by the solution algorithm, that is, the largest dimension of the working subspace. The
third argument, mpd, is the maximum projected dimension. These parameters can also be set
from the command line with —~qep_nev, -qep_ncv and -gep_mpd.

For the selection of the portion of the spectrum of interest, there are several alternatives
listed in Table 5.2, to be selected with the function

QEPSetWhichEigenpairs(QEP qep,QEPWhich which);

The main difference with respect to EPS is that sorting with respect to a target value is currently
unavailable for QEP. The default is to compute the largest magnitude eigenvalues.

5.4 Selecting the Solver

The solution method can be specified procedurally with
QEPSetType (QEP gep,QEPType method) ;

or via the options database command -qep_type followed by the name of the method. The
methods currently available in QEP are listed in Table 5.3. The first one is based on linearization,
while the rest either work implicitly on a linearization, or operate directly on the quadratic
problem without linearizing.

The QEPLINEAR method carries out a linearization of the quadratic eigenproblem, as de-
scribed in §5.1, resulting in a generalized eigenvalue problem that is handled by an EPS object
created internally. If required, this EPS object can be extracted with the operation

QEPLinearGetEPS (QEP gep,EPS *eps);

LIf sLEPc is compiled for real scalars, then the absolute value of the imaginary part, |Tm())|, is used for
eigenvalue selection and sorting.
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Options
Method QEPType Database Name
Linearization QEPLINEAR linear

Quadratic Arnoldi QEPQARNOLDI  garnoldi

Table 5.3: Quadratic eigenvalue solvers available in the QEP module.

This allows the application programmer to set any of the EPS options directly within the code.
Also, it is possible to change the EPS options through the command-line, simply by prefixing
the EPS options with -qep_.

The expression used in the linearization is specified by two parameters:

1. The problem type set with QEPProblemType, which chooses from non-symmetric, sym-
metric, and Hamiltonian linearizations.

2. The companion form, 1 or 2, that can be chosen with
QEPLinearSetCompanionForm(QEP gep,PetscInt cform);

Another option of the QEPLINEAR solver is whether the matrices of the linearized problem
are created explicitly or not. This is set with the function

QEPLinearSetExplicitMatrix(QEP gep,PetscTruth exp);

In the case of explicit creation, matrices A and B are created as real Mat’s, with explicit storage,
whereas the implicit option works with shell Mat’s that operate only with the constituent blocks
M, C and K. The explicit case requires more memory but gives more flexibility, e.g., for
choosing a preconditioner.

As a complete example of how to solve a quadratic eigenproblem via linearization, consider
the following command line:

$ ./program -gep_type linear -qep_hermitian -qgep_linear_cform 2
-gep_linear_explicitmatrix -qep_eps_type krylovschur
-gep_st_ksp_type gmres -qep_st_pc_type bjacobi

The S2 linearization (Eq. 5.6) will be used, with explicit matrix storage and a preconditioned
iterative method for solving linear systems with matrix B.

5.5 Retrieving the Solution

After the call to QEPSolve has finished, the computed results are stored internally. The pro-
cedure for retrieving the computed solution is exactly the same as in the case of EPS. The
user has to call QEPGetConverged first, to obtain the number of converged solutions, then call
QEPGetEigenpair repeatedly within a loop, once per each eigenvalue-eigenvector pair. The
same considerations relative to complex eigenvalues apply, see §2.5 for additional details.
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Reliability of the Computed Solution. As in the case of linear problems, the function

QEPComputeRelativeError (QEP gep,PetscInt j,PetscReal *error);

is available to assess the accuracy of the computed solutions. This error is based on the com-
putation of the 2-norm of the residual vector, defined as

r=(\M+\C + K)i, (5.10)

where X and # represent any of the nconv computed eigenpairs delivered by QEPGetEigenpair.
When solving the quadratic problem via linearization, an accurate solution of the generalized
eigenproblem does not necessarily imply a similar level of accuracy for the quadratic problem.
Tisseur [2000] shows that in the case of the N1 linearization (Eq. 5.3), a small backward error in
the generalized eigenproblem guarantees a small backward error in the quadratic eigenproblem.
However, this holds only if M, C' and K have a similar norm.
When the norm of M, C and K vary widely, Tisseur [2000] recommends to solve the scaled
problem, defined as
(U2 My + pCp + K)z = 0, (5.11)

with 4 = N a, M, = oM and C, = aC, where « is a scaling factor. Ideally, o should be
chosen in such a way that the norms of M,, C, and K have similar magnitude. In SLEPc, this
is done automatically and the user can call

QEPSetScaleFactor (QEP qgep,PetscReal alpha);

LK oo
1Moo

to specify the scaling factor. If not specified, the value a« = will be used.

Controlling and Monitoring Convergence. As in the case of EPS, in QEP the number
of iterations carried out by the solver can be determined with QEPGetIterationNumber, and
the tolerance and maximum number of iterations can be set with QEPSetTolerances. Also,
convergence can be monitored with command-line keys -qep_monitor, -qep_monitor_all,
-gep_monitor_conv, —gep_monitor_draw, or -gep_monitor_draw_all. See §2.5.3 for addi-
tional details.
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CHAPTER 6

Additional Information

This chapter contains miscellaneous information as a complement to the previous chapters,
which can be regarded as less important.

6.1 Supported PETSc Features

SLEPc relies on PETSc for all the features that are not directly related to eigenvalue problems.
All the functionality associated to vectors and matrices as well as linear systems of equations is
provided by PETSc. Also, low level details are inherited directly from PETSc. In particular, the
parallelism within SLEPc methods is handled completely by PETSc’s vector and matrix modules.

SLEPc only contains high level objects, as depicted in Figure 1.1. These object classes have
been designed and implemented following the philosophy of other high level objects in PETSc.
In this way, SLEPc benefits from a number of PETSc’s good properties such as the following (see
PETSc users guide for details):

e Portability and scalability in a wide range of platforms. Different architecture builds can
coexist in the same installation. Where available, dynamic libraries are used to reduce
disk space of executable files.

e Support for profiling of programs:

— Display performance statistics with -log_summary, including also SLEPc’s objects.
The collected data are flops and execution times as well as information about parallel
performance, for individual subroutines and the possibility of user-defined stages.

— Event logging, including user-defined events.
— Direct wall-clock timing with PetscGetTime.
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— Display detailed profile information and trace of events.
e Convergence monitoring, both textual and graphical.
e Support for debugging of programs:

— Debugger startup and attachment of parallel processes.
— Automatic generation of back-traces of the call stack.

— Detection of memory leaks.

e A number of viewers for visualization of data, including built-in graphics capabilities
that allow for sparse pattern visualization, graphic convergence monitoring, operator’s
spectrum visualization and other user-defined operations.

e Easy handling of runtime options.

e Support for Fortran programming, including modules, interfaces and data types in Fortran
90. See §6.7 for an example program in Fortran 77.

6.2 Supported Matrix Types

Methods implemented in EPS merely require vector operations and matrix-vector products. In
PETSc, mathematical objects such as vectors and matrices have an interface that is independent
of the underlying data structures. SLEPc manipulates vectors and matrices via this interface and,
therefore, it can be used with any of the matrix representations provided by PETSc, including
dense, sparse, and symmetric formats, either sequential or parallel.

The above statement must be reconsidered when using EPS in combination with ST. As
explained in chapter 3, in many cases the operator associated to a spectral transformation not
only consists in pure matrix-vector products but also other operations may be required as well,
most notably a linear system solve (see Table 3.2). In this case, the limitation is that there must
be support for the requested operation for the selected matrix representation. For instance, if
one wants to use cholesky for the solution of the linear systems, then it may be necessary to
work with a symmetric matrix format such as MATSBAIJ.

Shell Matrices. In many applications, the matrices that define the eigenvalue problem are
not available explicitly. Instead, the user knows a way of applying these matrices to a vector.

An intermediate case is when the matrices have some block structure and the different
blocks are stored separately. There are numerous situations in which this occurs, such as the
discretization of equations with a mixed finite-element scheme. An example is the eigenproblem
arising in the stability analysis associated with Stokes problems,

Rt AR o
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where x and p denote the velocity and pressure fields. Similar formulations also appear in many
other situations.

Many of these problems can be solved by reformulating them as a reduced-order standard
or generalized eigensystem, in which the matrices are equal to certain operations of the blocks.
These matrices are not computed explicitly to avoid losing sparsity.

All these cases can be easily handled in SLEPc¢ by means of shell matrices. These are matrices
that do not require explicit storage of the component values. Instead, the user must provide
subroutines for all the necessary matrix operations, typically only the application of the linear
operator to a vector.

Shell matrices, also called matrix-free matrices, are created in PETSc with the command
MatCreateShell. Then, the function MatShellSetOperation is used to provide any user-
defined shell matrix operations (see the PETSc documentation for additional details). Several
examples are available in SLEPc that illustrate how to solve a matrix-free eigenvalue problem.

In the simplest case, defining matrix-vector product operations (MATOP_MULT) is enough for
using EPS with shell matrices. However, in the case of generalized problems, if matrix B is
also a shell matrix then it may be necessary to define other operations in order to be able to
solve the linear system successfully, for example MATOP_GET_DIAGONAL to use an iterative linear
solver with Jacobi preconditioning. On the other hand, if the shift-and-invert ST is to be used,
then in addition it may also be necessary to define MATOP_SHIFT or MATOP_AXPY (see §3.4.2 for
discussion).

In the case of SVD, both A and A* are required to solve the problem. So when computing
the SVD, the shell matrix needs to have the MATOP_MULT_TRANSPOSE operation in addition to
MATOP_MULT. Alternatively, if A* is to be built explicitly, MATOP_TRANSPOSE is then the required
operation (for details see the manual page for SVDSetTransposeMode).

6.3 GPU Computing

Experimental support for graphics processor unit (GPU) computing is included in SLEPc 3.2.
This is related to the previous section because GPU support in PETSc is based on using special
types of Mat and Vec. Currently, GPU support in SLEPc has been tested only in the Krylov-
Schur EPS solver, although it may work in other solvers as well. Regarding PETSc, all iterative
linear solvers are prepared to run on the GPU, but this is not the case for direct solvers and
preconditioners (see PETSc documentation for details). The user must not expect a spectacular
performance boost, but in general moderate gains can be achieved by running the eigensolver
on the GPU instead of the CPU (in some cases a 10-fold improvement).

PETSc’s GPU support currently relies on NVIDIA CUDA Toolkit 4.0', that provides a
C/C++ compiler with CUDA extensions and the Thrust library, together with the Cusp li-
brary?, that implements sparse linear algebra and graph computations on CUDA based on
Thrust data structures. For instance, to configure PETSc with GPU support in single precision
arithmetic use the following options:

Ihttp://developer.nvidia.com/cuda-toolkit-40
2http://code.google.com/p/cusp-library
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$ ./configure --with-precision=single --with-cuda --with-thrust
--with-cusp --with-cusp-dir=/path/to/cusp-library

VECCUSP and MATAIJCUSP are currently the mechanism in PETSc to run a computation on
the GPU. VECCUSP is a special type of Vec whose array is mirrored in the GPU (and similarly
for MATAIJCUSP). PETSc takes care of keeping memory coherence between the two copies of the
array, and performs the computation on the GPU when possible, trying to avoid unnecessary
copies between the host and the device. For maximum efficiency, the user has to make sure that
all vectors and matrices are of these types. If they are created in the standard way (VecCreate
plus VecSetFromOptions) then it is sufficient to run the program with

$ ./program -vec_type cusp -mat_type aijcusp

6.4 Extending SLEPc

Shell matrices, presented in §6.2, are a simple mechanism of extensibility, in the sense that
the package is extended with new user-defined matrix objects. Once the new matrix has been
defined, it can be used by SLEPc in the same way as the rest of the matrices as long as the
required operations are provided.

A similar mechanism is available in SLEPc also for extending the system incorporating new
spectral transformations (ST). This is done by using the STSHELL spectral transformation type,
in a similar way as shell matrices or shell preconditioners. In this case, the user defines how the
operator is applied to a vector and optionally how the computed eigenvalues are transformed
back to the solution of the original problem (see §6.4 for details). This tool is intended for simple
spectral transformations. For more sophisticated transformations, the user should register a new
ST type (see below).

The function

STShellSetApply (ST,PetscErrorCode (*) (ST,Vec,Vec));

has to be invoked after the creation of the ST object in order to provide a routine that applies
the operator to a vector. And the function

STShellSetBackTransform(ST,PetscErrorCode (*) (ST,PetscInt,PetscScalar*,PetscScalarx*));

can be used optionally to specify the routine for the back-transformation of eigenvalues. The
two functions provided by the user can make use of any required user-defined information via
a context that can be retrieved with STShellGetContext. An example program is provided in
the SLEPc distribution in order to illustrate the use of shell transformations.

SLEPc further supports extensibility by allowing application programmers to code their own
subroutines for unimplemented features such as new eigensolvers or new spectral transforma-
tions. It is possible to register these new methods to the system and use them as the rest of
standard subroutines. For example, to implement a variant of the Subspace Iteration method,
one could copy the SLEPc code associated to the subspace solver, modify it and register a new
EPS type with the following line of code
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EPSRegister ("newsubspace",0,"EPSCreate_NEWSUB" ,EPSCreate_NEWSUB) ;
After this call, the new solver could be used in the same way as the rest of SLEPc solvers:
$ ./program -eps_type newsubspace

EPSRegister can be used to register new types whose code is linked into the executable.
To register types in a dynamic library use EPSRegisterDynamic.
A similar mechanism is available for registering new types of classes ST, SVD and QEP.

6.5 Directory Structure

The directory structure of the SLEPc software is very similar to that in PETSc. The root directory
of SLEPc contains the following directories:

bin - Directory containing useful scripts. In particular, the Matlab interface is located here.
conf - Directory containing the base SLEPc makefile, to be included in application makefiles.
config - SLEPc configuration scripts.

docs - All documentation for SLEPc, including this manual. The subdirectory manualpages
contains the on-line manual pages of each SLEPc routine.

include - All include files for SLEPc. The following subdirectories exist:

finclude - include files for Fortran programmers.
private - include files containing implementation details, for developer use only.

shared - Datafiles used by some examples.
src - The source code for all SLEPc components, which currently includes:

sys - general system-related routines.

eps - eigenvalue problem solver.

st - spectral transformation.

svd - singular value decomposition solver.

gep - quadratic eigenvalue problem solver.

ip - inner product, for developer use only.

vec - custom vector implementation, for developer use only.

$PETSC_ARCH - For each value of PETSC_ARCH, a directory exists containing files generated
during installation of that particular configuration. The following subdirectories exist:

1ib - all the generated libraries.
conf - configuration parameters and log files.
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include - automatically generated include files, such as Fortran 90 *.mod files.
Each SLEPc source code component directory has the following subdirectories:

interface - The calling sequences for the abstract interface to the components. Code here
does not know about particular implementations.

impls - Source code for one or more implementations.
examples - Example programs, classified in:

tutorials - examples intended for learning to use SLEPc.

tests - examples used by testing scripts.

6.6 Wrappers to External Libraries

SLEPc interfaces to several external libraries for the solution of eigenvalue problems. This section
provides a short description of each of these packages as well as some hints for using them with
SLEPc, including pointers to the respective websites from which the software can be downloaded.
The description may also include method-specific parameters, that can be set in the same way
as other SLEPc options, either procedurally or via the command-line.

In order to use SLEPc together with an external library such as ARPACK, one needs to do
the following.

1. Install the external software, with the same compilers and MPI that will be used for
PETSc/SLEPC.

2. Enable the utilization of the external software from SLEPc by specifying configure options
as explained in §1.2.2.

3. Build the SLEPc libraries.
4. Use the runtime option -eps_type <type> to select the solver.
Exceptions to the above rule are LAPACK, which should be enabled during PETSc’s configu-

ration, and BLOPEX, that must be installed with --download-blopex in SLEPc’s configure.

LAPACK
References. [Anderson et al., 1992].
Website. http://www.netlib.org/lapack.

Version. 3.0 or later.
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Summary. LAPACK (Linear Algebra PACKage) is a software package for the solution of many
different dense linear algebra problems, including various types of eigenvalue problems
and singular value decompositions.

SLEPc explicitly creates the operator matrix in dense form and then the appropriate
LAPACK driver routine is invoked. Therefore, this interface should be used only for testing
and validation purposes and not in a production code. The operator matrix is created by
applying the operator to the columns of the identity matrix.

Installation. The SLEPc interface to LAPACK can be used directly. If SLEPC’s configure script
complains about missing LAPACK functions, then configure PETSc with option -—download-
f2cblaslapack.

ARPACK

References. [Lehoucq et al., 1998], [Maschhoff and Sorensen, 1996].
Website. http://www.caam.rice.edu/software/ARPACK.
Version. Release 2 (plus patches).

Summary. ARPACK (ARnoldi PACKage) is a software package for the computation of a few
eigenvalues and corresponding eigenvectors of a general n X n matrix A. It is most
appropriate for large sparse or structured matrices, where structured means that a matrix-
vector product w < Av requires order n rather than the usual order n? floating point
operations.

ARPACK is based upon an algorithmic variant of the Arnoldi process called the Implicitly
Restarted Arnoldi Method (IRAM). When the matrix A is symmetric it reduces to a
variant of the Lanczos process called the Implicitly Restarted Lanczos Method (IRLM).
These variants may be viewed as a synthesis of the Arnoldi/Lanczos process with the
Implicitly Shifted QR technique that is suitable for large scale problems.

It can be used for standard and generalized eigenvalue problems, both in real and complex
arithmetic. It is implemented in Fortran 77 and it is based on the reverse communica-
tion interface. A parallel version, PARPACK, is available with support for both MPI and
BLACS.

Installation. First of all, unpack arpack96.tar.gz and also the patch file patch.tar.gz.
Even if ARPACK is to be used with just one processor, it is necessary to uncompress also
the contents of the file parpack96.tar.gz together with the patches ppatch.tar.gz.
Make sure you delete any mpif .h files that could exist in the directory tree. After setting
all the directories, modify the ARmake.inc file and then compile the software with make
all. It is recommended that ARPACK is installed with its own LAPACK version since it
may give unexpected results with more recent versions of LAPACK.

PRIMME

References. [Stathopoulos and McCombs, 2010].
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Website. http://www.cs.wm.edu/ andreas/software.
Version. 1.1.

Summary. PRIMME (PReconditioned Iterative MultiMethod Eigensolver) is a C library for
finding a number of eigenvalues and their corresponding eigenvectors of a real symmetric
(or complex Hermitian) matrix. This library provides a multimethod eigensolver, based on
Davidson/Jacobi-Davidson. Particular methods include GD+1, JDQMR, and LOBPCG.
It supports preconditioning as well as the computation of interior eigenvalues.

Installation. Type make 1lib after customizing the file Make_flags appropriately.

Specific options. Since PRIMME contains preconditioned solvers, the SLEPc interface uses
STPRECOND, as described in 3.3.5.

The SLEPc interface to this package allows the user to specify the maximum allowed
block size with the function EPSPRIMMESetBlockSize or at run time with the option
—-eps_primme_block_size <size>.

For changing the particular algorithm within PRIMME, use the function EPSPRIMMESet-
Method. Other options related to the method are the use of preconditioning (with function
EPSPRIMMESetPrecond) and the restarting strategy (EPSPRIMMESetRestart).

BLZPACK

References. [Marques, 1995].
Website. http://crd.1lbl.gov/ osni/#Software.
Version. 04/00.

Summary. BLZPACK (Block LancZos PACKage) is a standard Fortran 77 implementation of
the block Lanczos algorithm intended for the solution of the standard eigenvalue problem
Ax = px or the generalized eigenvalue problem Ax = pBx, where A and B are real, sparse
symmetric matrices. The development of this eigensolver was motivated by the need to
solve large, sparse, generalized problems from free vibration analysis in structural engi-
neering. Several upgrades were performed afterwards aiming at the solution of eigenvalue
problems from a wider range of applications.

BLZPACK uses a combination of partial and selective re-orthogonalization strategies. It
can be run in either sequential or parallel mode, by means of MPI or PVM interfaces, and
it uses the reverse communication strategy.

Installation. For the compilation of the libblzpack.a library, first check the appropriate
architecture file in the directory sys/MACROS and then type creator -mpi.

Specific options. The SLEPc interface to this package allows the user to specify the block size
with the function EPSBlzpackSetBlockSize or at run time with the option —eps_blzpack_
block_size <size>. Also, the function EPSBlzpackSetNSteps can be used to set the
maximum number of steps per run (also with -eps_blzpack_nsteps).
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TRLAN

References. [Wu and Simon, 2000].
Website. http://crd.1lbl.gov/ kewu/trlan.html.
Version. 201009.

Summary. This package provides a Fortran 90 implementation of the dynamic thick-restart
Lanczos algorithm. This is a specialized version of Lanczos that targets only the case in
which one wants both eigenvalues and eigenvectors of a large real symmetric eigenvalue
problem that cannot use the shift-and-invert scheme. In this case the standard non-
restarted Lanczos algorithm requires to store a large number of Lanczos vectors, what
can cause storage problems and make each iteration of the method very expensive.

TRLAN requires the user to provide a matrix-vector multiplication routine. The parallel
version uses MPI as the message passing layer.

Installation. To install this package, it is necessary to have access to a Fortran 90 compiler.
The compiler name and the options used are specified in the file called Make.inc. To
generate the library, type make plib in the TRLan directory.

BLOPEX

References. [Knyazev et al., 2007].
Website. http://code.google.com/p/blopex.

Summary. BLOPEX is a package that implements the Locally Optimal Block Preconditioned
Conjugate Gradient (LOBPCG) method for computing several extreme eigenpairs of
symmetric positive generalized eigenproblems. Numerical comparisons suggest that this
method is a genuine analog for eigenproblems of the standard preconditioned conjugate
gradient method for symmetric linear systems.

Installation. In order to use BLOPEX from SLEPc, it necessary to install it during SLEPc’s
configuration: ./configure --download-blopex.

Specific options. Since BLOPEX contains preconditioned solvers, the SLEPc interface uses
STPRECOND, as described in 3.3.5.

6.7 Fortran Interface

SLEPc provides an interface for Fortran 77 programmers, very much like PETSc. As in the
case of PETSc, there are slight differences between the C and Fortran SLEPc interfaces, due to
differences in Fortran syntax. For instance, the error checking variable is the final argument of
all the routines in the Fortran interface, in contrast to the C convention of providing the error
variable as the routine’s return value.



http://crd.lbl.gov/~kewu/trlan.html
http://code.google.com/p/blopex

20

25

30

35

40

45

50

55

6.7. Fortran Interface Chapter 6. Additional Information

The following code is a sample program written in Fortran 77. It is the Fortran equivalent of
the program given in §1.4.1 and can be found in ${SLEPC_DIR}/src/eps/examples/tutorials
(file ex1f.F, see also the Fortran 90 counterpart ex1£90.F90).

SLEPc - Scalable Library for Eigenvalue Problem Computations
Copyright (c) 2002-2011, Universitat Politecnica de Valencia, Spain

This file is part of SLEPc.

]

1

1

1

]

! SLEPc is free software: you can redistribute it and/or modify it under the
! terms of version 3 of the GNU Lesser General Public License as published by
! the Free Software Foundation.
]

]

1

1

1

]

]

1

SLEPc is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.

You should have received a copy of the GNU Lesser General Public License
along with SLEPc. If not, see <http://www.gnu.org/licenses/>.
1
! Program usage: mpirun -np n exif [-help] [-n <n>] [all SLEPc options]
]
! Description: Simple example that solves an eigensystem with the EPS object.
! The standard symmetric eigenvalue problem to be solved corresponds to the
! Laplacian operator in 1 dimension.
]
]
1
1
1
]

The command line options are:
-n <n>, where <n> = number of grid points = matrix size

program main
implicit none

#include <finclude/petscsys.h>
#include <finclude/petscvec.h>
#include <finclude/petscmat.h>
#include <finclude/slepcsys.h>
#include <finclude/slepceps.h>

Variables:
A operator matrix
eps eigenproblem solver context

Mat A

EPS eps

EPSType tname

PetscReal tol, error

PetscScalar kr, ki

PetscInt n, i, Istart, Iend
PetscInt nev, maxit, its, nconv
PetscInt col(3)

PetscInt i1,i2,i3

PetscMPIInt rank
PetscErrorCode ierr
PetscBool flg
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PetscScalar value(3)

call SlepcInitialize(PETSC_NULL_CHARACTER,ierr)

call MPI_Comm_rank (PETSC_COMM_WORLD,rank,ierr)

n = 30

call PetscOptionsGetInt (PETSC_NULL_CHARACTER,’-n’,n,flg,ierr)

if (rank .eq. 0) then
write(*,100) n
endif
format (/’1-D Laplacian Eigenproblem, n =’,I3,’ (Fortran)’)

call MatCreate(PETSC_COMM_WORLD,A,ierr)
call MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,n,n,ierr)
call MatSetFromOptions(A,ierr)

i1 =1
i2 =2
i3 =3

call MatGetOwnershipRange(A,Istart,Iend,ierr)
if (Istart .eq. 0) then
i=0
col(1l) =
col(2) =
value(1) 2.0
value(2) = -1.0
call MatSetValues(A,il,i,i2,col,value,INSERT_VALUES,ierr)
Istart = Istart+1
endif
if (Iend .eq. n) then
i =n-1
col(1) = n-2
col(2) = n-1
value(1) -1.0
value(2) 2.0
call MatSetValues(A,il,i,i2,col,value,INSERT_VALUES,ierr)
Iend = Iend-1
endif
value(1) = -1.0
value(2) = 2.0
value(3) = -1.0
do i=Istart,Iend-1
col(1) = i-1
col(2) =i
col(3) = i+1
call MatSetValues(A,il,i,i3,col,value,INSERT_VALUES,ierr)
enddo

= o

(=1

call MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY,ierr)
call MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY,ierr)
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110

120

130

** Create eigensolver context
call EPSCreate(PETSC_COMM_WORLD,eps,ierr)

** Set operators. In this case, it is a standard eigenvalue problem
call EPSSetOperators(eps,A,PETSC_NULL_OBJECT,ierr)
call EPSSetProblemType (eps,EPS_HEP,ierr)

** Set solver parameters at runtime
call EPSSetFromOptions(eps,ierr)

call EPSSolve(eps,ierr)
call EPSGetIterationNumber(eps,its,ierr)
if (rank .eq. 0) then
write(*,110) its
endif
format (/’ Number of iterations of the method:’,I4)

** Optional: Get some information from the solver and display it
call EPSGetType(eps,tname,ierr)
if (rank .eq. 0) then

write(*,120) tname

endif

format (’ Solution method: ’,A)

call EPSGetDimensions(eps,nev,PETSC_NULL_INTEGER, &
& PETSC_NULL_INTEGER,ierr)

if (rank .eq. 0) then
write(*,130) nev
endif
format (’ Number of requested eigenvalues:’,I2)
call EPSGetTolerances(eps,tol,maxit,ierr)
if (rank .eq. 0) then
write(*,140) tol, maxit
endif
format (’ Stopping condition: tol=’,1P,E10.4,’, maxit=’,I4)

** Get number of converged eigenpairs
call EPSGetConverged(eps,nconv,ierr)
if (rank .eq. 0) then
write(*,150) nconv
endif
format (° Number of converged eigenpairs:’,I2/)

** Display eigenvalues and relative errors
if (nconv.gt.0) then
if (rank .eq. 0) then
write (x,*) ° k | TAx-kx| |/ kx| ]’
write(*,*) ’
endif
do i=0,nconv-1
** Get converged eigenpairs: i-th eigenvalue is stored in kr
** (real part) and ki (imaginary part)
call EPSGetEigenpair(eps,i,kr,ki,PETSC_NULL_OBJECT, &
& PETSC_NULL_OBJECT, ierr)

** Compute the relative error associated to each eigenpair
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call EPSComputeRelativeError(eps,i,error,ierr)
if (rank .eq. 0) then
write(*,160) PetscRealPart(kr), error
endif
160 format (1P,’ ’,E12.4,° ’,E12.4)

enddo
if (rank .eq. 0) then
write(*,%)
endif
endif

! ** Free work space
call EPSDestroy(eps,ierr)
call MatDestroy(A,ierr)

call SlepcFinalize(ierr)
end

6.8 Matlab Interface

SLEPc 3.2 includes an interface intended to make most of SLEPc’s functionality available from
Matlab. It is experimental and needs further development, so users planning to use it seriously
are recommended to contact the authors. Below are some guidelines for using this interface.

First of all, PETSc must have been configured with the Matlab interface enabled. This can
be done as follows (check PETsc documentation for details):

$ ./configure --with-matlab --with-matlab-engine --with-shared-libraries

Once the PETSc and SLEPc libraries have been built, one has to set Matlab’s path to
point to the directories containing Matlab classes: $SLEPC_DIR/bin/matlab/classes and
$PETSC_DIR/bin/matlab/classes. Below we show a simple Matlab example (included in
SLEPCc’s distribution) that does this, and then solves a simple eigenproblem.

h

)

% Solves a standard eigenvalue problem with SLEPc
% User creates directly a PETSc Mat

% SLEPc - Scalable Library for Eigenvalue Problem Computations
% Copyright (c) 2002-2011, Universitat Politecnica de Valencia, Spain

% This file is part of SLEPc.

% SLEPc is free software: you can redistribute it and/or modify it under the
% terms of version 3 of the GNU Lesser General Public License as published by
% the Free Software Foundation.

% SLEPc is distributed in the hope that it will be useful, but WITHOUT ANY
% WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
% FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
% more details.
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% You should have received a copy of the GNU Lesser General Public License
% along with SLEPc. If not, see <http://www.gnu.org/licenses/>.

T
% Set the Matlab path and initialize SLEPc
)
path(path,’../../?)
if “exist(’PetscInitialize’,’file’)
PETSC_DIR = getenv(’PETSC_DIR’);
if isempty(PETSC_DIR)
error (’Must set environment variable PETSC_DIR or add the appropriate dir to Matlab path’)
end
path(path, [PETSC_DIR ’/bin/matlab/classes’])

end
SlepcInitialize({’-eps_monitor’,’—malloc’,’-malloc_debug’,’—malloc_dump’});
W

% Create a tridiagonal matrix (1-D Laplacian)

%

n = 30;

mat = PetscMat();
mat.SetType(’seqaij’);
mat.SetSizes(n,n,n,n);
for i=1:n
mat.SetValues(i,i,2.0);
end
for i=1:n-1
mat.SetValues(i+1,i,-1.0);
mat.SetValues(i,i+1,-1.0);
end
mat .AssemblyBegin(PetscMat.FINAL_ASSEMBLY) ;
mat . AssemblyEnd (PetscMat . FINAL_ASSEMBLY) ;

hh
% Create the eigensolver, pass the matrix and solve the problem
A
eps = SlepcEPS();
eps.SetType (’krylovschur’) ;
eps.SetOperators(mat) ;
eps.SetProblemType (SlepcEPS.HEP) ;
eps.SetFromOptions();
eps.Solve();
nconv = eps.GetConverged();
fprintf (’ k | TAx=kx ||/ 1kx|\n*)
fprintf (’ \n’)
for i=1:nconv

lambda = eps.GetEigenpair(i);

relerr = eps.ComputeRelativeError(i);

if isreal(lambda)

fprintf (° %12f %12g\n’ ,lambda,relerr)
else
fprintf (> %12f%+12f %12g\n’ ,real (lambda) ,imag(lambda) ,relerr)
end
end
W
% Free objects and shutdown SLEPc
A

mat.Destroy();
eps.Destroy();
SlepcFinalize();
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