Actual source code: ex2.c
2: static char help[] = "Solves a standard symmetric eigenproblem corresponding to the Laplacian operator in 2 dimensions.\n\n"
3: "The command line options are:\n\n"
4: " -n <n>, where <n> = number of grid subdivisions in x dimension.\n\n"
5: " -m <m>, where <m> = number of grid subdivisions in y dimension.\n\n";
7: #include slepceps.h
11: int main( int argc, char **argv )
12: {
13: Mat A; /* operator matrix */
14: EPS eps; /* eigenproblem solver context */
15: EPSType type;
16: PetscReal error, tol, re, im;
17: PetscScalar kr, ki;
18: int N, n=10, m, nev, ierr, maxit, i, j, I, J, its, nconv, Istart, Iend;
19: PetscScalar v;
20: PetscTruth flag;
22: SlepcInitialize(&argc,&argv,(char*)0,help);
24: PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL);
25: PetscOptionsGetInt(PETSC_NULL,"-m",&m,&flag);
26: if( flag==PETSC_FALSE ) m=n;
27: N = n*m;
28: PetscPrintf(PETSC_COMM_WORLD,"\n2-D Laplacian Eigenproblem, N=%d (%dx%d grid)\n\n",N,n,m);
30: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
31: Compute the operator matrix that defines the eigensystem, Ax=kx
32: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
34: MatCreate(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,N,N,&A);
35: MatSetFromOptions(A);
36:
37: MatGetOwnershipRange(A,&Istart,&Iend);
38: for( I=Istart; I<Iend; I++ ) {
39: v = -1.0; i = I/n; j = I-i*n;
40: if(i>0) { J=I-n; MatSetValues(A,1,&I,1,&J,&v,INSERT_VALUES); }
41: if(i<m-1) { J=I+n; MatSetValues(A,1,&I,1,&J,&v,INSERT_VALUES); }
42: if(j>0) { J=I-1; MatSetValues(A,1,&I,1,&J,&v,INSERT_VALUES); }
43: if(j<n-1) { J=I+1; MatSetValues(A,1,&I,1,&J,&v,INSERT_VALUES); }
44: v=4.0; MatSetValues(A,1,&I,1,&I,&v,INSERT_VALUES);
45: }
47: MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
48: MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
50: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
51: Create the eigensolver and set various options
52: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
54: /*
55: Create eigensolver context
56: */
57: EPSCreate(PETSC_COMM_WORLD,&eps);
59: /*
60: Set operators. In this case, it is a standard eigenvalue problem
61: */
62: EPSSetOperators(eps,A,PETSC_NULL);
63: EPSSetProblemType(eps,EPS_HEP);
65: /*
66: Set solver parameters at runtime
67: */
68: EPSSetFromOptions(eps);
70: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
71: Solve the eigensystem
72: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
74: EPSSolve(eps);
75: EPSGetIterationNumber(eps, &its);
76: PetscPrintf(PETSC_COMM_WORLD," Number of iterations of the method: %d\n",its);
78: /*
79: Optional: Get some information from the solver and display it
80: */
81: EPSGetType(eps,&type);
82: PetscPrintf(PETSC_COMM_WORLD," Solution method: %s\n\n",type);
83: EPSGetDimensions(eps,&nev,PETSC_NULL);
84: PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %d\n",nev);
85: EPSGetTolerances(eps,&tol,&maxit);
86: PetscPrintf(PETSC_COMM_WORLD," Stopping condition: tol=%.4g, maxit=%d\n",tol,maxit);
88: /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
89: Display solution and clean up
90: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
92: /*
93: Get number of converged approximate eigenpairs
94: */
95: EPSGetConverged(eps,&nconv);
96: PetscPrintf(PETSC_COMM_WORLD," Number of converged approximate eigenpairs: %d\n\n",nconv);
97:
99: if (nconv>0) {
100: /*
101: Display eigenvalues and relative errors
102: */
103: PetscPrintf(PETSC_COMM_WORLD,
104: " k ||Ax-kx||/||kx||\n"
105: " ----------------- ------------------\n" );
107: for( i=0; i<nconv; i++ ) {
108: /*
109: Get converged eigenpairs: i-th eigenvalue is stored in kr (real part) and
110: ki (imaginary part)
111: */
112: EPSGetEigenpair(eps,i,&kr,&ki,PETSC_NULL,PETSC_NULL);
113: /*
114: Compute the relative error associated to each eigenpair
115: */
116: EPSComputeRelativeError(eps,i,&error);
118: #ifdef PETSC_USE_COMPLEX
119: re = PetscRealPart(kr);
120: im = PetscImaginaryPart(kr);
121: #else
122: re = kr;
123: im = ki;
124: #endif
125: if (im!=0.0) {
126: PetscPrintf(PETSC_COMM_WORLD," %9f%+9f j %12f\n",re,im,error);
127: } else {
128: PetscPrintf(PETSC_COMM_WORLD," %12f %12f\n",re,error);
129: }
130: }
131: PetscPrintf(PETSC_COMM_WORLD,"\n" );
132: }
133:
134: /*
135: Free work space
136: */
137: EPSDestroy(eps);
138: MatDestroy(A);
139: SlepcFinalize();
140: return 0;
141: }