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Abstract

This document describes slepc, the Scalable Library for Eigenvalue Problem

Computations, a software package for the solution of large sparse eigenproblems
on parallel computers. It can be used for the solution of problems formulated
in either standard or generalized form, as well as other related problems such
as the singular value decomposition.

The emphasis of the software is on methods and techniques appropriate
for problems in which the associated matrices are sparse, for example, those
arising after the discretization of partial differential equations. Therefore, most
of the methods offered by the library are projection methods or other methods
with similar properties. Examples of these methods are Arnoldi, Lanczos and
Subspace Iteration, to name a few. slepc implements these basic methods
as well as more sophisticated algorithms. It also provides built-in support for
spectral transformations such as shift-and-invert.

slepc is a general library in the sense that it covers standard and generalized
eigenvalue problems, both Hermitian and non-Hermitian, with either real or
complex arithmetic.

slepc is built on top of petsc, the Portable, Extensible Toolkit for Scien-
tific Computation [Balay et al., 2004]. It can be considered an extension of
petsc providing all the functionality necessary for the solution of eigenvalue
problems. This means that petsc must be previously installed in order to use
slepc. petsc users will find slepc very easy to use, since it enforces the same
programming paradigm. Those readers which are not acquainted with petsc
are highly recommended to familiarize with it before proceeding with slepc.

This manual provides a general description of the package. In addition,
manual pages for individual routines are included in the distribution in hypertext
format.

slepc interfaces to some external software packages such as:

• arpack, http://www.caam.rice.edu/software/ARPACK.

• blzpack, http://www.nersc.gov/~osni/#Software.

• planso, http://www.nersc.gov/research/SIMON/planso.html.

• trlan, http://www.nersc.gov/~kewu/trlan.html.

These are all optional packages and do not need to be installed to use slepc.
See section B.5 for details.
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How to get slepc

All the information related to slepc can be found at the following web site:

http://www.grycap.upv.es/slepc.

The distribution file is available for download at this site. Other information
is provided there, such as installation instructions and contact information. In-
structions for installing the software can also be found in section 1.2 of this
document.

petsc can be downloaded from http://www.mcs.anl.gov/petsc. petsc is
supported, and information on contacting support can be found at this site.
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Chapter 1

Introduction

slepc, the Scalable Library for Eigenvalue Problem Computations, is a soft-
ware package for the solution of large sparse eigenvalue problems on parallel
computers.

Together with linear systems of equations, eigenvalue problems are a very
important class of linear algebra problems. The need for the numerical solution
of these problems arises in many situations in science and engineering. There is
a strong demand for solving problems associated with stability and vibrational
analysis in practical applications, which are usually formulated as large sparse
eigenproblems.

Computing eigenvalues is essentially more difficult than solving linear sys-
tems of equations. This has resulted in a very active research activity in the area
of computational methods for eigenvalue problems in the last years, with many
remarkable achievements. However, these state-of-the-art methods and algo-
rithms are not easily transferred to the scientific community, and, apart from a
few exceptions, scientists keep on using traditional well-established techniques.

The reasons for this situation are manifold. First, new methods are increas-
ingly complex and difficult to implement and therefore robust implementations
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1.1. Getting Started Chapter 1. Introduction

must be provided by computational specialists, for example as software libraries.
The development of such libraries requires to invest a lot of effort but sometimes
they do not reach normal users due to a lack of awareness.

In the case of eigenproblems, using libraries is not straightforward. It is
usually recommended that the user understands how the underlying algorithm
works and typically the problem is successfully solved only after several cycles
of testing and parameter tuning. Methods are often specific for a certain class
of eigenproblems (e.g. complex symmetric) and this leads to an explosion of
available algorithms from which the user has to choose. Not all these algorithms
are available in the form of software libraries, even less frequently with parallel
capabilities.

A further obstacle appears when these methods have to be applied in a
large software project developed by inter-disciplinary teams. In this scenery,
libraries must be able to interoperate with already existing software and with
other libraries, possibly written in a different programming language. In order to
cope with the complexity associated with such large software projects, libraries
must be designed carefully in order to overcome hurdles such as different storage
formats. In the case of parallel software, care must be taken also to achieve
portability to a wide range of platforms with good performance and still retain
flexibility and usability.

The slepc library is an attempt to address this complexity and provides a
set of tools that can be used to obtain a solution in many applications. slepc
is based on petsc, the Portable, Extensible Toolkit for Scientific Computa-
tion [Balay et al., 2004], and, therefore, a large percentage of the complexity
is avoided since slepc relies on petsc for all low level implementation details.
slepc focuses on high level features structured around a few types of objects.
It offers a growing number of solution methods as well as interfaces to integrate
well-established eigenvalue packages such as arpack.

1.1 Getting Started

slepc is a general library for the solution of eigenvalue problems, in the sense
that it covers standard and generalized eigenvalue problems, both Hermitian and
non-Hermitian, with either real or complex arithmetic. This manual assumes
that the reader is familiar with eigenvalue problems, their basic mathematical
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Chapter 1. Introduction 1.1. Getting Started

properties and the basic techniques and methods to solve them. A brief intro-
duction to the topic is included in section A.1. A nice introduction of eigenvalue
problems and an overview of methods can be found in [Golub and van der Vorst,
2000].

The emphasis of slepc is on methods and techniques appropriate for prob-
lems in which the associated matrices are sparse, for example, those arising after
the discretisation of partial differential equations. Therefore, most of the meth-
ods offered by the library are projection methods or other methods with similar
properties. Examples of these methods are Arnoldi, Lanczos and Subspace Iter-
ation, to name a few. A comprehensive description of state-of-the-art methods
of this kind can be found in [Bai et al., 2000]. slepc contains implementations of
the basic methods as well as a growing number of more sophisticated algorithms.

The Portable, Extensible Toolkit for Scientific Computation (petsc) uses
modern programming paradigms to ease the development of large-scale scientific
application codes in Fortran, C, and C++ and provides a powerful set of tools
for the numerical solution of partial differential equations and related problems
on high-performance computers. slepc is based on petsc, and this means that
petsc must be previously installed in order to use slepc. petsc users will
find slepc very easy to use, since it enforces the same programming paradigm.
Those readers which are not acquainted with petsc are highly recommended to
familiarize with it before proceeding with slepc. An introduction to petsc is
included in section A.2.

slepc can be considered an extension of petsc providing all the functionality
necessary for the solution of eigenvalue problems. Figure 1.1 shows a diagram
of all the different objects included in petsc (on the left) and those added by
slepc (on the right). petsc is a prerequisite for slepc and users should be
familiar with basic concepts such as vectors and matrices in order to use slepc.
Therefore, together with this manual we recommend to use the petsc Users
Manual [Balay et al., 2004].

The complete slepc distribution, users manual, manual pages, and addi-
tional information are available via the slepc home page at

http://www.grycap.upv.es/slepc.

The slepc home page also contains details regarding installation, new features
and changes in recent versions of slepc, and more information.

— 3 —
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Figure 1.1: Numerical components of petsc and slepc.

Within the slepc distribution, the directory ${SLEPC_DIR}/docs contains
all the documentation of the library. Manual pages for all slepc functions can be
accessed on-line at http://www.grycap.upv.es/slepc/document.htm. These
manual pages provide hyperlinked indices (organized by both concepts and rou-
tine names) to the source code and enable easy movement among related topics.
The file slepc.ps contains the Postscript form of the slepc Users Manual (this
document). A PDF version is also available.

Note to Fortran Programmers: As in the case of petsc, in this manual
all the examples and calling sequences are given for the C/C++ programming
languages. However, Fortran programmers can use most of the functionality of
slepc and petsc from Fortran, with only minor differences in the user interface.
Section 4.3 provides a discussion of the differences between using slepc from
Fortran and C, as well as complete Fortran examples.
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1.2 Installation

This section gives an overview of the installation procedure. For full installation
instructions see http://www.grycap.upv.es/slepc/install.htm.

Previously to the installation of slepc, the system must have an appropriate
version of petsc installed. Table 1.1 shows a list of slepc versions and their
corresponding petsc versions. slepc versions marked as major releases are
those which incorporate some new functionality. The rest are just adaptations
required for a new petsc release and may also include bug fixes.

slepc version petsc version Major Status Release date

2.1.0 2.1.0 ? Not released -

2.1.1 2.1.1 Released Dec 2002

2.1.2

2.1.3

2.1.5 2.1.5 Released May 2003

2.1.6

2.2.0 2.2.0 ? Released Apr 2004

Table 1.1: Correspondence between slepc and petsc releases.

Although installing petsc can be tricky some times, in general it is very easy.
The user simply sets the environment variables PETSC_DIR and PETSC_ARCH and
types make. Apart of this, some customization may be necessary, see the petsc
documentation for details.

The installation process for slepc is very similar. The main steps are de-
scribed next. Note that prior to this steps, optional packages must have been
installed. If any of these packages is installed afterwards, recompilation is neces-
sary. Refer to http://www.grycap.upv.es/slepc/install.htm or to section
B.5 for details about installation of some of these packages.

1. Unbundle the distribution file slepc.tgz with a usual command such as
gunzip -c slepc.tgz | tar xvf -. This will create a directory and
unpack the software there.

2. Refer to http://www.grycap.upv.es/slepc/download.htm for available
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1.2. Installation Chapter 1. Introduction

patches to the latest slepc release.

3. Set the environment variable SLEPC_DIR to the full path of the slepc home
directory, for example,

setenv SLEPC_DIR /home/username/slepc-2.2.0

In addition to this variable, PETSC_DIR and PETSC_ARCH must also be
set correctly, the first one pointing to the petsc home directory and the
other containing the selected architecture (remember that petsc allows
several versions compiled for different architectures to coexist in the same
directory tree).

4. Edit the file ${SLEPC_DIR}/bmake/${PETSC_ARCH}/packages to indicate
the local installation of optional software packages such as arpack. If
there exists no directory named bmake/${PETSC_ARCH} for the value of
${PETSC_ARCH} you are using, then create it similar to the existing ones.

5. In the slepc home directory, type

make BOPT=g

to build a debugging version of slepc, or

make BOPT=O

to build an optimized version of the slepc libraries. The flag BOPT de-
termines what type of libraries are built (i.e., specifies compiler options).
Other available alternatives are BOPT=[g_complex,O_complex] for com-
plex numbers versions (see section 4.4).

6. If the installation went smoothly, then try running some test examples
with the command

make BOPT=g slepc_testexamples >& examples_log

Examine the file examples_log for any obvious errors or problems.

7. The Fortran libraries are built automatically during the installation out-
lined above. To compile and test the Fortran examples, use the command
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make BOPT=g slepc_testfortran >& fortran_log

For details about availability of slepc on Windows platforms, see the up-to-
date information in http://www.grycap.upv.es/slepc/install.htm.

1.3 Running slepc Programs

Before using slepc, the user must first set the environment variable SLEPC_DIR,
indicating the full path of the slepc home directory. For example, under the
UNIX C shell a command of the form

setenv SLEPC_DIR /software/slepc

can be placed in the user’s .cshrc file. In addition, the user must set the two
environment variables required by petsc, that is, PETSC_DIR, to indicate the
full path of the petsc installation, and PETSC_ARCH to specify the architecture
(e.g., rs6000, solaris, IRIX, etc.) on which petsc is being used. The utility
${PETSC_DIR}/bin/petscarch can be used for this purpose. For example,

setenv PETSC_ARCH ‘$PETSC_DIR/bin/petscarch‘

can be placed in a .cshrc file. Thus, even if several machines of different types
share the same filesystem, PETSC_ARCH will be set correctly when logging into
any of them.

All petsc programs use the MPI (Message Passing Interface) standard for
message-passing communication [MPI Forum, 1994]. Thus, to execute slepc
programs, users must know the procedure for launching MPI jobs on their se-
lected computer system(s). For instance, when using the mpich implementation
of MPI and many others, the mpirun command can be used to initiate a program
as in the following example that uses eight processors:

mpirun -np 8 slepc_program [arguments]

All petsc-compliant programs support the use of the -h or -help option
as well as the -v or -version option. In the case of slepc programs, specific
information for slepc is also displayed.

— 7 —
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1.4 Writing slepc Programs

Most slepc programs begin with a call to SlepcInitialize

SlepcInitialize(int *argc,char ***argv,char *file,char *help);

which initializes slepc, petsc and MPI. This subroutine is very similar to
PetscInitialize, and the arguments have the same meaning. In fact, in-
ternally SlepcInitialize calls PetscInitialize. In Fortran the initialization
command has the form

SlepcInitialize(character file,integer ierr)

After this initialization, slepc programs can use communicators defined by
petsc. In most cases users can employ the communicator PETSC_COMM_WORLD to
indicate all processes in a given run and PETSC_COMM_SELF to indicate a single
process. MPI provides routines for generating new communicators consisting of
subsets of processors, though most users rarely need to use these. slepc users
need not program much message passing directly with MPI, but they must be
familiar with the basic concepts of message passing and distributed memory
computing.

All slepc routines return an integer indicating whether an error has occurred
during the call. The error code is set to be nonzero if an error has been detected;
otherwise, it is zero. For the C/C++ interface, the error variable is the routine’s
return value, while for the Fortran version, each petsc routine has as its final
argument an integer error variable.

All slepc programs should call SlepcFinalize as their final (or nearly final)
statement, as given below in the C/C++ and Fortran formats, respectively:

ierr = SlepcFinalize();

call SlepcFinalize(ierr)

This routine handles options to be called at the conclusion of the program, and
calls PetscFinalize if SlepcInitialize began petsc.

1.5 Simple slepc Example

To help the user start using slepc immediately, a simple example is listed next
which solves an eigenvalue problem associated with the one-dimensional Lapla-
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cian operator discretized with finite differences. This example can be found in
${SLEPC_DIR}/src/examples/ex1.c. Following the code we highlight a few of
the most important parts of this example.

static char help[] = "Solves a standard symmetric eigenproblem corresponding to the "
"Laplacian operator in 1 dimension.\n\n"
"The command line options are:\n\n"

5 " -n <n>, where <n> = number of grid subdivisions = matrix dimension.\n\n";

#include "slepceps.h"

#undef __FUNCT__
10 #define __FUNCT__ "main"

int main( int argc, char **argv )

{
Mat A; /* operator matrix */

EPS eps; /* eigenproblem solver context */
15 EPSType type;

PetscReal error, tol,re, im;

PetscScalar kr, ki;
int n=30, nev, ierr, maxit, i, its, nconv,

col[3], Istart, Iend, FirstBlock=0, LastBlock=0;
20 PetscScalar value[3];

SlepcInitialize(&argc,&argv,(char*)0,help);

ierr = PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL);CHKERRQ(ierr);
25 ierr = PetscPrintf(PETSC_COMM_WORLD,"\n1-D Laplacian Eigenproblem, n=%d\n\n",n);

CHKERRQ(ierr);

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Compute the operator matrix that defines the eigensystem, Ax=kx
30 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

ierr = MatCreate(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,n,n,&A);CHKERRQ(ierr);

ierr = MatSetFromOptions(A);CHKERRQ(ierr);

35 ierr = MatGetOwnershipRange(A,&Istart,&Iend);CHKERRQ(ierr);

if (Istart==0) FirstBlock=PETSC_TRUE;
if (Iend==n) LastBlock=PETSC_TRUE;

value[0]=-1.0; value[1]=2.0; value[2]=-1.0;
for( i=(FirstBlock? Istart+1: Istart); i<(LastBlock? Iend-1: Iend); i++ ) {

40 col[0]=i-1; col[1]=i; col[2]=i+1;

ierr = MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);
}

if (LastBlock) {
i=n-1; col[0]=n-2; col[1]=n-1;

45 ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);
}
if (FirstBlock) {

i=0; col[0]=0; col[1]=1; value[0]=2.0; value[1]=-1.0;

— 9 —



1.5. Simple slepc Example Chapter 1. Introduction

ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);
50 }

ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

55 /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Create the eigensolver and set various options
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

/*

60 Create eigensolver context
*/
ierr = EPSCreate(PETSC_COMM_WORLD,&eps);CHKERRQ(ierr);

/*

65 Set operators. In this case, it is a standard eigenvalue problem
*/
ierr = EPSSetOperators(eps,A,PETSC_NULL);CHKERRQ(ierr);

/*

70 Set solver parameters at runtime
*/

ierr = EPSSetFromOptions(eps);CHKERRQ(ierr);

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

75 Solve the eigensystem
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

ierr = EPSSolve(eps);CHKERRQ(ierr);
ierr = EPSGetIterationNumber(eps, &its);CHKERRQ(ierr);

80 ierr = PetscPrintf(PETSC_COMM_WORLD," Number of iterations of the method: %d\n",its);
CHKERRQ(ierr);

/*
Optional: Get some information from the solver and display it

*/
85 ierr = EPSGetType(eps,&type);CHKERRQ(ierr);

ierr = PetscPrintf(PETSC_COMM_WORLD," Solution method: %s\n\n",type);CHKERRQ(ierr);

ierr = EPSGetDimensions(eps,&nev,PETSC_NULL);CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_WORLD," Number of requested eigenvalues: %d\n",nev);

CHKERRQ(ierr);
90 ierr = EPSGetTolerances(eps,&tol,&maxit);CHKERRQ(ierr);

ierr = PetscPrintf(PETSC_COMM_WORLD," Stopping condition: tol=%.4g, maxit=%d\n",tol,maxit);

CHKERRQ(ierr);

95 /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Display solution and clean up
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

/*
100 Get number of converged approximate eigenpairs

*/
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ierr = EPSGetConverged(eps,&nconv);CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_WORLD," Number of converged eigenpairs: %d\n\n",nconv);

CHKERRQ(ierr);
105

if (nconv>0) {
/*

Display eigenvalues and relative errors

*/
110 ierr = PetscPrintf(PETSC_COMM_WORLD,

" k ||Ax-kx||/||kx||\n"
" ----------------- ------------------\n" );CHKERRQ(ierr);

for( i=0; i<nconv; i++ ) {
115 /*

Get converged eigenpairs: i-th eigenvalue is stored in kr (real part) and
ki (imaginary part)

*/
ierr = EPSGetEigenpair(eps,i,&kr,&ki,PETSC_NULL,PETSC_NULL);CHKERRQ(ierr);

120 /*

Compute the relative error associated to each eigenpair
*/

ierr = EPSComputeRelativeError(eps,i,&error);CHKERRQ(ierr);

125 #ifdef PETSC_USE_COMPLEX
re = PetscRealPart(kr);
im = PetscImaginaryPart(kr);

#else
re = kr;

130 im = ki;
#endif

if (im!=0.0) {

ierr = PetscPrintf(PETSC_COMM_WORLD," %9f%+9f j %12f\n",re,im,error);CHKERRQ(ierr);
} else {

135 ierr = PetscPrintf(PETSC_COMM_WORLD," %12f %12f\n",re,error);CHKERRQ(ierr);
}

}
ierr = PetscPrintf(PETSC_COMM_WORLD,"\n" );CHKERRQ(ierr);

}

140

/*

Free work space
*/
ierr = EPSDestroy(eps);CHKERRQ(ierr);

145 ierr = MatDestroy(A);CHKERRQ(ierr);
ierr = SlepcFinalize();CHKERRQ(ierr);

return 0;
}
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Include Files

The C/C++ include files for slepc should be used via statements such as

#include "slepceps.h"

where slepceps.h is the include file for the EPS component. Each slepc pro-
gram must specify an include file that corresponds to the highest level slepc
objects needed within the program; all of the required lower level include files are
automatically included within the higher level files. For example, slepceps.h
includes slepcst.h (spectral transformations), and slepc.h (base slepc file).
The slepc include files are located in the directory ${SLEPC_DIR}/include.

The Options Database

All the petsc functionality related to the options database is available in slepc.
This allows the user to input control data at run time very easily. In this exam-
ple the command PetscOptionsGetInt(PETSC_NULL,"-n",&n,PETSC_NULL);

checks whether the user has provided a command line option to set the value of
n, the problem dimension. If so, the variable n is set accordingly; otherwise, n
remains unchanged.

Vectors and Matrices

Usage of matrices and vectors in slepc is exactly the same as in petsc. The
user can create a new parallel or sequential matrix, A, which has M global rows
and N global columns, with the routine MatCreate

MatCreate(MPI_Comm comm,int m,int n,int M,int N,Mat *A);

where the matrix format can be specified at runtime. The example creates a
matrix, sets the nonzero values with MatSetValues and then assembles it.

Eigensolvers

Usage of eigensolvers is very similar to other kinds of solvers provided by petsc.
After creating the matrix (or matrices) that define the problem, Ax = kx (or
Ax = kBx), the user can then use EPS to solve the system with the following
sequence of commands:
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EPSCreate(MPI_Comm comm,EPS *eps);

EPSSetOperators(EPS eps,Mat A,Mat B);

EPSSetFromOptions(EPS eps);

EPSSolve(EPS eps);

EPSGetIterationNumber(EPS eps,int *its);

EPSGetConverged(EPS eps, int *nconv);

EPSGetEigenpair(EPS eps,int i,PetscScalar *kr,PetscScalar *ki,

Vec xr,Vec xi);

EPSDestroy(EPS eps);

The user first creates the EPS context and sets the operators associated with
the eigensystem. The user then sets various options for customized solution,
solves the problem, retrieves the solution, and finally destroys the EPS context.
Chapter 2 describes in detail the EPS package, including the options database
which enables the user to customize the solution process at runtime by selecting
the solution algorithm and also specifying the convergence tolerance, setting
various monitoring routines, etc.

Spectral Transformation

In the example program above there is no explicit reference to spectral transfor-
mations. However, an ST object is handled internally so that the user is able to
request different transformations such as shift-and-invert. Chapter 3 describes
the ST package in detail.

Error Checking

All slepc routines return an integer indicating whether an error has occurred
during the call. The petsc macro CHKERRQ(ierr) checks the value of ierr and
calls the petsc error handler upon error detection. CHKERRQ(ierr) should be
used in all subroutines to enable a complete error traceback. See the petsc
manual for full details.

Writing Application Codes with slepc

The examples provided in the src/examples directory demonstrate the software
usage and can serve as templates for developing custom applications. To write
a new application program using slepc, we suggest the following procedure:
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1. Install and test slepc according to the instructions at the slepc web site.

2. Copy the slepc example that corresponds to the class of problem of in-
terest (e.g., singular value decomposition).

3. Copy the corresponding makefile within the example directory; compile
and run the example program.

4. Use the example program as a starting point for developing a custom code.

1.6 Directory Structure

The directory structure of the slepc software is very similar to that in petsc.
The root directory of slepc contains the following directories:

bmake - Base slepc makefile directory. Includes subdirectories for various ar-
chitectures.

docs - All documentation for slepc, including this manual. The subdirectory
manualpages contains the on-line manual pages of each slepc routine.

include - All include files for slepc that are visible to the user.

include/finclude - slepc include files for Fortran programmers using the .F
suffix.

lib - Location of all the generated libraries for each combination of BOPT and
architecture.

src - The source code for all slepc components, which currently includes

sys - general system-related routines.

eps - eigenvalue problem solver.

st - spectral transformation.

fortran - Fortran interface stubs.

examples - example programs.

mat/examples - matrices used by some examples.
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Each slepc source code component directory has the following subdirecto-
ries:

interface - The calling sequences for the abstract interface to the components.
Code here does not know about particular implementations.

impls - Source code for one or more implementations.
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Chapter 2

EPS: Eigenvalue Problem Solver

The Eigenvalue Problem Solver (EPS) is the main object provided by slepc. It
is used to specify an eigenvalue problem, either in standard or generalized form,
and provides uniform and efficient access to all of the eigensolvers included in
the package. Conceptually, the level of abstraction occupied by EPS is similar
to other solvers in petsc such as KSP for solving linear systems of equations.

2.1 General Description

The EPS module can be used to solve eigenvalue problems. In the standard
formulation, the problem consists in the determination of λ ∈ C for which the
equation

Ax = λx (2.1)

has nontrivial solution, where A ∈ Cn×n and x ∈ Cn. The scalar λ and the
vector x are called eigenvalue and eigenvector, respectively. Note that they
can be complex even when the matrix is real. slepc can also solve eigenvalue
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problems in generalized form,

Ax = λBx , (2.2)

where B ∈ Cn×n.
The methods provided by slepc are appropriate for large sparse eigenprob-

lems and typically only use matrix A in matrix-vector products of the form
w = Av, or w = B−1Av in the generalized case. In these two cases, the matrices
A and B−1A, respectively, will be referred to as the operator matrix. Therefore,
the implemented methods apply the operator to a set of vectors repeatedly until
the approximations to the eigenpairs are sufficiently accurate. The operator can
adopt yet other different forms if spectral transformations are used, as explained
in chapter 3.

slepc assumes that only a subset of the eigenvalues must be computed. The
user specifies how many of them and also in which part of the spectrum they
are to be sought.

2.2 Basic Usage

The EPS module is used in a similar way as other petsc modules such as KSP.
All the information related to an eigenvalue problem is handled via a context
variable. The usual object management functions are available (EPSCreate,
EPSDestroy, EPSView, EPSSetFromOptions). In addition, the EPS object pro-
vides functions for setting several parameters such as the number of eigenvalues
to compute, the dimension of the subspace, the requested tolerance and the max-
imum number of iterations allowed. The user can also specify other things such
as the orthogonalization technique or the portion of the spectrum of interest.

The solution of the problem is obtained in several steps. First of all, the
matrices associated to the eigenproblem are specified via EPSSetOperators.
Then, a call to EPSSolve is done which invokes the subroutine for the selected
eigensolver. EPSGetConverged can be used afterwards to determine how many of
the requested eigenpairs have converged to working precision. EPSGetEigenpair
is finally used to retrieve the eigenvalues and eigenvectors.

In order to illustrate the basic functionality of the EPS package, a simple
example is shown in figure 2.1. The example code implements the solution of
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Vec xr, xi; /* basis vectors */

Mat A; /* operator matrix */

EPS eps; /* eigenproblem solver context */

PetscReal error;

5 PetscScalar kr, ki;

int its, nconv;

EPSCreate( PETSC_COMM_WORLD, &eps );

EPSSetOperators( eps, A, PETSC_NULL );

10 EPSSetFromOptions( eps );

EPSSolve( eps );

EPSGetIterationNumber( eps, &its );

EPSGetConverged( eps, &nconv );

EPSGetEigenpair( eps, j, &kr, &ki, xr, xi );

15 EPSComputeRelativeError( eps, i, &error );

EPSDestroy( eps );

Figure 2.1: Example code for basic solution with EPS.

a simple standard eigenvalue problem. Code for setting up the matrix A is not
shown and error-checking code is omitted.

All the operations of the program are done over a single EPS object. This
solver context is created in line 8 with the command

EPSCreate(MPI_Comm comm,EPS *eps);

Here comm is the MPI communicator, and eps is the newly formed solver context.
Before actually solving an eigenvalue problem with EPS, the user must specify
the matrices associated to the problem, as in line 9, with the following routine

EPSSetOperators(EPS eps,Mat A,Mat B);

The only necessary change to the example code in order to solve a general-
ized problem is to provide matrix B as the third argument to the call. The
matrices specified in this call can be in any petsc format. In particular, EPS
allows the user to solve matrix-free problems by specifying matrices created via
MatCreateShell. A more detailed discussion of this issue is given in section
4.1.
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After setting the problem matrices, the value of the different options could
be set by means of a function call such as EPSSetTolerances (explained later
in this chapter). After this, a call to EPSSetFromOptions should be made as in
line 10,

EPSSetFromOptions(EPS eps);

The effect of this call is that options specified at runtime in the command line
are passed to the EPS object appropriately. In this way, the user can easily
experiment with different combinations of options without having to recompile.
All the available options as well as the associated function calls are described
later in this chapter.

Line 11 launches the solution algorithm, simply with the command

EPSSolve(EPS eps);

The subroutine which is actually invoked depends on which solver has been
selected by the user.

All the data associated to the solution of the eigenproblem is kept internally.
The function

EPSGetIterationNumber(EPS eps,int *its);

retrieves in the parameter its either the iteration number at which convergence
was successfully reached, or the negative of the iteration at which a problem
was detected. And the function

EPSGetConverged(EPS eps,int *nconv);

queries how many eigenpairs have converged to working precision. The solution
of the eigenproblem is retrieved in line 14 with one or serveral calls to the
following function

EPSGetEigenpair(EPS eps,int j,PetscScalar *kr,PetscScalar *ki,

Vec xr, Vec xi);

This function returns the j-th solution of the eigenproblem. kr and ki receive
the real and imaginary parts of the eigenvalue, while xi and xr receive the
real and imaginary parts of the associated eigenvector. Therefore, the j-th
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eigenvalue is kr+ i·ki and the j-th eigenvector is stored in the Vec objects xr

and xi. [Note: see section 4.4 for a detailed discussion of this issue.]
In line 15 of the example the relative residual error ‖Axj−λjBxj‖/‖λjxj‖

associated to the j-th eigenpair is computed with a call to

EPSComputeRelativeError(EPS eps,int j,PetscReal *error);

Once the EPS context is no longer needed, it should be destroyed with the
command

EPSDestroy(EPS eps);

The above procedure is sufficient for general use of the EPS package. As in
the case of the KSP solver, the user can optionally explicitly call

EPSSetUp(EPS eps);

before calling EPSSolve to perform any setup required for the eigensolver.
Internally, the EPS object works with an ST object (spectral transformation,

described in chapter 3). To allow application programmers to set any of the
spectral transformation options directly within the code, the following routine
is provided to extract the ST context,

EPSGetST(EPS eps,ST *st);

With the command

EPSView(EPS eps,PetscViewer viewer);

it is possible to examine the information relevant to the EPS object, such as the
value of the different parameters, including also data related to the associated
ST object.

The options database key -eps_plot_eigs instructs slepc to plot the com-
puted approximations of the eigenvalues in an X display after the solution pro-
cess.

2.3 Defining the Problem

From the information provided by the user, slepc tries to guess the kind of
problem that is to be solved. For instance, if the user provides two matrices
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Problem Type EPSProblemType Command line key

Hermitian EPS_HEP -eps_hermitian

Generalized Hermitian EPS_GHEP -eps_gen_hermitian

Non-Hermitian EPS_NHEP -eps_non_hermitian

Generalized Non-Hermitian EPS_GNHEP -eps_gen_non_hermitian

Table 2.1: Problem types considered in EPS.

then the problem is generalized. However, the user has also the ability to specify
explicitly the problem type. This could be used for instance to force a non-
Hermitian version of an algorithm even when the matrix is Hermitian, or when
the guess made by slepc is not correct. However, normal usage will not require
this.

The problem type can be specified at run time with the corresponding com-
mand line key (see table 2.1) or within the program with the function

EPSSetProblemType(EPS eps,EPSProblemType type);

The type of the problem can be determined with the functions

EPSIsGeneralized(EPS eps,PetscTruth *gen);

EPSIsHermitian(EPS eps,PetscTruth *her);

The user can specify which eigenvalues to compute. The default is to com-
pute only one eigenvalue (and eigenvector), in particular, the dominant one
(largest in magnitude). The function

EPSSetDimensions(EPS eps,int nev,int ncv);

allows the specification of the number of eigenvalues to compute, nev. The last
argument can be set to prescribe the number of basis vectors to be used by the
solution algorithm, ncv. These two parameters can also be set at run time with
the options -eps_nev and -eps_ncv. For example, the command line

$ program -eps_nev 10 -eps_ncv 24

requests 10 eigenvalues and instructs to use 24 basis vectors. Note that ncv must
be al least equal to nev, although in general it is recommended (depending on
the method) to work with a larger subspace, for instance ncv≥2∗nev.
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EPSWhich Command line key Sorting criterion

EPS_LARGEST_MAGNITUDE -eps_largest_magnitude Largest |λ|

EPS_SMALLEST_MAGNITUDE -eps_smallest_magnitude Smallest |λ|

EPS_LARGEST_REAL -eps_largest_real Largest Re(λ)

EPS_SMALLEST_REAL -eps_smallest_real Smallest Re(λ)

EPS_LARGEST_IMAGINARY -eps_largest_imaginary Largest Im(λ)1

EPS_SMALLEST_IMAGINARY -eps_smallest_imaginary Smallest Im(λ)1

Table 2.2: Available possibilities for selection of the eigenvalues of interest.

For the selection of the portion of the spectrum of interest, there are several
alternatives. In real symmetric problems, one may want to compute the largest
or smallest eigenvalues in magnitude, or the leftmost or rightmost ones. In
other problems, in which the eigenvalues can be complex, then one can select
eigenvalues depending on the magnitude, or the real part or even the imaginary
part. Table 2.2 sumarizes all the possibilities available for the function

EPSSetWhichEigenpairs(EPS eps,EPSWhich which);

which can also be specified at the command line. This criterion is used both
for configuring how the eigensolver seeks eigenvalues (note that not all these
possibilities are available for all the solvers) and also for sorting the computed
values. To compute eigenvalues located in the interior part of the spectrum,
the user should use a spectral transformation (see chapter 3). Note that in this
case, the value of which applies to the transformed spectrum.

Another option for specifying the problem is when the user is only interested
in the eigenvalues but does not care about eigenvectors. In this case the user
can choose not to compute the eigenvectors (this can reduce the amount of
computation in some cases), with the command

EPSSetDropEigenvectors(EPS eps);

or at run time with -eps_drop_eigenvectors.

1If slepc is compiled for real numbers (e.g. BOPT=O), then the absolute value of the
imaginary part, |Im(λ)|, is used for eigenvalue selection and sorting.
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Options

Method EPSType Database Name

Power Method / Inverse Iteration EPSPOWER power

Rayleigh Quotient Iteration EPSRQI rqi

Subspace Iteration EPSSUBSPACE subspace

Arnoldi Method EPSARNOLDI arnoldi

Wrapper to arpack EPSARPACK arpack

Wrapper to lapack EPSLAPACK lapack

Wrapper to blzpack EPSBLZPACK blzpack

Wrapper to planso EPSPLANSO planso

Wrapper to trlan EPSTRLAN trlan

Table 2.3: Eigenvalue solvers available in the EPS module.

2.4 Selecting the Eigensolver

The available methods for solving the eigenvalue problems are the following:

• Power Iteration with deflation. When combined with shift-and-invert (see
chapter 3), it is equivalent to the Inverse Iteration.

• Rayleigh Quotient Iteration (RQI).

• Subspace Iteration with non-Hermitian projection and locking.

• Arnoldi method with explicit restart and deflation.

A detailed description of the implemented algorithms is included in appendix B
of this manual.

In addition to these methods, slepc provides also wrappers to external pack-
ages such as arpack, blzpack, planso, or trlan. A complete list of this
interfaces can be found in section B.5.

The solution method can be specified procedurally or via the command line.
The application programmer can set it by means of the command

EPSSetType(EPS eps,EPSType method);

where method can be one of EPSPOWER, EPSRQI, EPSSUBSPACE, EPSARNOLDI,
EPSARPACK, EPSLAPACK, EPSBLZPACK, EPSPLANSO, or EPSTRLAN. The EPS method
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can also be set with the options database command -eps_type followed by the
name of the method (see table 2.3).

2.5 Controlling the Solution Process

Most of the algorithms implemented in slepc iteratively build and refine a
vector basis of a certain subspace. This basis is constructed starting from an
initial vector, v0. EPS initializes this starting vector randomly. This default is
a reasonable choice. However, it is also possible to supply the starting vector
with the command

EPSSetInitialVector(EPS eps,Vec v0);

This can be useful when the eigenvalue calculation is one of a sequence of closely
related problems. In this case, a suitable starting vector can usually acceler-
ate convergence, for instance, to construct a starting vector by taking a linear
combination of the eigenvectors computed in a previously converged eigenvalue
calculation.

It is possible to specify the tolerance requested for the convergence test. An
approximate eigenvalue is considered to be converged if the error estimate asso-
ciated to it is lower than the specified tolerance. Note that the error estimates
can be computed differently depending on the solution method. The tolerance
can be specified at run time with -eps_tol <tol> or inside the program with
the function

EPSSetTolerances(EPS eps,PetscReal tol,int max_it);

The third parameter of this function allows the programmer to modify the max-
imum number of iterations permitted to the solution algorithm, which can also
be set via -eps_max_it <its>. Note that the default values for these and other
parameters can be algorithm dependent. See appendix B for reference.

At the end of the solution process, error estimates are available via

EPSGetErrorEstimate(EPS eps,int,j,PetscReal *errest);

Error estimates can also be displayed during execution of the solution algo-
rithm, as a way of monitoring convergence. The user can activate this feature
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by using -eps_monitor within the options database. By default, the solvers
run silently without displaying information about the iteration. slepc also
provides a different kind of convergence monitor which displays the value of
the approximate eigenvalues instead of the error estimates. This is done with
-eps_monitor_values. Both types of monitors are compatible and can be used
at the same time if desired.

Application programmers can provide their own routines to perform the
monitoring by using the commands

EPSSetMonitor(EPS eps,int (*mon)(EPS eps,int its,int nconv,

PetscReal *errest,int nest,void *mctx),void *mctx);

EPSSetValuesMonitor(EPS eps,int (*mon)(EPS eps,int its,int nconv,

PetscScalar *kr,PetscScalar *ki,int nest,void *mctx),

void *mctx);

2.6 Advanced Usage

This section includes the description of several advanced features of the eigen-
solver object. The default settings are appropriate for most applications and
modification is not necessary for normal usage.

2.6.1 Orthogonalization

Internally, eigensolvers in EPS often need to orthogonalize a vector against a
set of vectors (for instance, when building an orthonormal basis of a Krylov
subspace). This operation in carried out typically by a Gram-Schmidt orthog-
onalization procedure.

It has been acknowledged that the classical Gram-Schmidt (CGS) algorithm
may produce vectors which are far from orthogonal. The method known as mod-
ified Gram-Schmidt (MGS) is numerically to be preferred, since the achieved
orthogonality is of the order of machine precision times condition number of
the matrix whose columns are the vectors to orthogonalize. This may still be
insufficient for matrices that are ill conditioned, such as the case of Krylov sub-
spaces. To overcome this difficulty, the MGS process can be applied iteratively
(a single reorthogonalization step is sufficient in practice). A simple test has
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been devised to assess when a second orthogonalization is required, see [Daniel
et al., 1976]. On the other hand, the same idea is applicable to the CGS process
and it has been shown that the same accuracy can be attained in the same
number of iterations, see [Hoffmann, 1989].

Algorithm 2.1 (Classical Gram-Schmidt with Iterative Refinement)

Input: Vector v to orthogonalize against the m columns of Q
Output: Orthogonalized vector q

h = QHv
q̃ = v −Qh
If ||q̃||2 < η||h||2

s = QH q̃
q̃ = q̃ −Qs
h = h + s

end
q = q̃/||q̃||2

Algorithm 2.2 (Modified Gram-Schmidt with Iterative Refinement)

Input: Vector v to orthogonalize against the m columns of Q
Output: Orthogonalized vector q

q̃ = v
For i = 1, . . . , m

hi = qH
i q̃

q̃ = q̃ − qihi

End
If ||q̃||2 < η||h||2

For i = 1, . . . , m
si = qH

i q̃
q̃ = q̃ − qisi

End
h = h + s

end
q = q̃/||q̃||2

slepc provides implementations of both CGS and MGS with iterative refine-
ment (see algorithms 2.1 and 2.2 above). The default is CGS since it is better
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suited for parallel architectures. The user is able to select the orthogonalization
technique to be used. Again, this can be done procedurally or via the command
line. The following function provides all the possibilities

EPSSetOrthogonalization(EPS eps,EPSOrthogonalizationType type,

EPSOrthogonalizationRefinementType refinement, PetscReal eta);

The argument type can be used to choose between CGS and MGS. The ar-
gument refinement specifies if refinement should be performed always (thus
carrying out unnecessary work), never (i.e. the non-iterative algorithms) or if
needed (according to the condition established in the algorithms above). In
the last case, the value of η can be provided via the last argument, eta. The
default is to do refinement if needed with a value of η equal to 1/

√
2, as sug-

gested in [Reichel and Gragg, 1990]. Alternatively, all these options can be
specified in the command line with -eps_orthog_type [cgs|mgs] for the al-
gorithm, -eps_orthog_refinement [never|ifneeded|always] for the refine-
ment strategy, and -eps_orthog_eta for setting the value of η.
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ST: Spectral Transformation

The other main slepc object is the Spectral Transformation (ST), which en-
capsulates the functionality required for acceleration techniques based on the
transformation of the spectrum. As explained in chapter 2, the implemented
eigensolvers work by applying an operator to a set of vectors and this operator
can adopt different forms. The ST object handles all the different possibilities in
a uniform way, so that the solver can proceed without knowing which transfor-
mation has been selected. The type of spectral transformation can be specified
at run time, as well as several parameters such as the value of the shift.

3.1 General Description

Spectral transformations are powerful tools for manipulating the way in which
eigensolvers behave when coping with a problem. The general strategy consists
in transforming the original problem into a new one in which eigenvalues are
mapped to a new position while eigenvectors typically remain unchanged. These
transformations can be used with several goals in mind:
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• Avoid convergence problems. For instance, simple methods such as the
Power Iteration can fail to obtain the solution under certain conditions,
and sometimes this situation can be avoided by simply shifting the spec-
trum.

• Compute internal eigenvalues. In some applications, the eigenpairs of
interest are not the extremal ones (largest magnitude, smallest magnitude,
rightmost, leftmost), but those contained in a certain interval or those
closest to a certain value of the complex plane.

• Accelerate convergence. Convergence properties typically depend on how
close the eigenvalues are from each other. With some spectral transfor-
mations, difficult eigenvalue distributions can be remapped in a more fa-
vorable way in terms of convergence.

• Handle some special situations. For instance, in generalized problems
when matrix B is singular, it may be necessary to use a spectral transfor-
mation.

slepc separates spectral transformations from solution methods so that any
combination of them can be specified by the user. To achieve this, all the
eigensolvers contained in EPS must be implemented in such a way that they are
independent of which transformation has been selected by the user. That is, the
solver algorithm has to work with a generic operator, whose actual form depends
on the transformation used. After convergence, eigenvalues are transformed
back appropriately.

3.2 Basic Usage

The ST module is the analogue to other petsc modules such as PC. The user
does not usually need to create a stand-alone ST object explicitly. Instead, every
EPS object internally sets up an associated ST. Therefore, the usual object man-
agement methods such as STCreate, STDestroy, STView, STSetFromOptions,
are not usually called by the user.

Although the ST context is hidden inside the EPS object, the user still has
control over all the options, by means of the command line, or also inside the
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program. To allow application programmers to set any of the spectral trans-
formation options directly within the code, the following routine is provided to
extract the ST context from the EPS object,

EPSGetST(EPS eps,ST *st);

After this, one is able to set any options associated to the ST object. For
example, to set the value of the shift, the following function is available

STSetShift(ST st,PetscScalar shift);

This can also be done with the command line option -st_shift <shift>.
[Note: the argument shift is defined as a PetscScalar, and this means that
complex shifts are not allowed unless the complex version of slepc is used —
see section 4.4 for a detailed discussion of this issue.]

Other object operations are available for applying the operator, setting op-
tions, etc. which are not usually called by the user. The most important of such
functions are STApply, which applies the operator to a vector, STApplyB, which
applies matrix B to a vector, and STSetUp which prepares all the necessary data
structures before the solution process starts. The operator refers to one of A,
B−1A, A + σI , ... depending on which kind of spectral transformation is being
used.

3.3 Available Transformations

This section describes the spectral transformations which are provided in slepc.
As in the case of eigensolvers, the spectral transformation to be used can be
specified procedurally or via the command line. The application programmer
can set it by means of the command

STSetType(ST st,STType type);

where type can be one of STSHIFT, STSINV, or STSHELL. The ST type can also
be set with the options database command -st_type followed by the name of
the method (see table 3.1).

The first two spectral transformations are described in detail in the rest of
this section. Table 3.2 summarizes the operator used in each case, either for
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Options

Spectral Transformation STType Database Name

Shift from Origin STSHIFT shift

Shift-and-invert STSINV sinvert

Shell Transformation STSHELL shell

Table 3.1: Spectral transformations available in the ST package.

ST Standard problem Generalized problem

shift A + σI B
−1

A + σI

sinvert (A − σI)−1 (A − σB)−1
B

Table 3.2: Operators used in each spectral transformation mode.

standard or generalized eigenproblems. The last possibility, STSHELL, uses a
specific, application-provided spectral transformation. Section 3.4.3 describes
how to implement one of this transformations.

The expressions shown in table 3.2 are not built explicitly. Instead, the
appropriate operations are carried out when applying the operator to a certain
vector. The inverses imply the solution of a linear system of equations which
is managed by setting up an associated KSP object. The user can control the
behavior of this object by adjusting the appropriate options, as will be illustrated
with examples in section 3.4.1.

In the table, the value σ in both shift of origin (shift) and shift-and-invert
(sinvert) transformations, represents the value of the shift. As explained above,
this value can be specified via the STSetShift function or in the command line.

3.3.1 Default Behavior

By default, a zero shift spectral transformation is performed (STSHIFT). This
means that in this case σ = 0 and the solver works with the original expressions
of the eigenvalue problems,

Ax = λx , (3.1)
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for standard problems, and Ax = λBx for generalized ones. Note that this last
equation is in fact treated internally as

B−1Ax = λx . (3.2)

When the eigensolver in EPS requests the application of the operator to a vector,
a matrix-vector multiplication by matrix A is carried out (in the standard case)
or a matrix-vector multiplication by matrix A followed by a linear system solve
with coefficient matrix B (in the generalized case). Note that in this case, the
operation will fail if matrix B is singular.

3.3.2 Shift from Origin

The purpose of this spectral transformation (STSHIFT) is to shift the whole
spectrum by a certain quantity, σ, which is called shift from origin. To achieve
this, the solver has to work with the shifted matrix, that is, the expressions it
has to cope with are

(A + σI)x = θx , (3.3)

for standard problems, and

(B−1A + σI)x = θx , (3.4)

for generalized ones. The important property that is used is that shifting does
not alter the eigenvectors and that it does change the eigenvalues in a simple
known way, it shifts them by σ. In both the standard and the generalized
problems, the following relation holds

θ = λ + σ . (3.5)

This means that after the solution process, the value σ has to be subtracted from
the computed eigenvalues, θ, in order to retrieve the solution of the original
problem, λ. This is done by means of the function STBackTransform, which
does not need to be called directly by the user.

3.3.3 Shift-and-invert

The shift-and-invert spectral transformation (STSINV) is used to enhance con-
vergence of eigenvalues in the neighbourhood of a given value. In this case, the
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solver deals with the expressions

(A− σI)−1x = θx , (3.6)

for standard problems, and

(A− σB)−1Bx = θx , (3.7)

for generalized ones. This transformation is effective for finding eigenvalues
near σ since the eigenvalues θ of the operator that are largest in magnitude
correspond to the eigenvalues λ of the original problem that are nearest to the
shift σ in absolute value. Once they are found, they may be transformed back to
eigenvalues of the original problem. Again, the eigenvectors remain unchanged.
In this case, the relation between the eigenvalues of both problems is

θ = 1/(λ− σ) . (3.8)

Therefore, after the solution process, the operation to be performed in function
STBackTransform is λ = σ + 1/θ for each of the computed eigenvalues.

3.4 Advanced Usage

Using the ST object is very straightforward. However, when using spectral trans-
formations many things are happening behind the scenes, mainly the solution
of linear systems of equations. The user must be aware of what is going on
in each case, so that it is possible to guide the solution process to the most
beneficial way. This section describes several advanced aspects which can have
a considerable impact on efficiency.

3.4.1 Solution of Linear Systems

In many of the cases shown in table 3.2, the operator contains an inverted
matrix which means that a linear system of equations must be solved whenever
the application of the operator to a vector is required. These cases are handled
internally by means of a KSP object.

In the simplest case, a generalized problem is to be solved with a zero shift.
A sample command line could be
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$ program -eps_type subspace -eps_tol 1e-6 -eps_monitor

In this case, assuming that the program solves a generalized problem, the ST

object associated to the EPS solver creates a KSP object whose coefficient matrix
is B. This KSP object will be set with the default values, that is, GMRES with
ILU preconditioning (see the petsc documentation for details).

The default values corresponding to the KSP object can be modified via the
command line. For instance,

$ program -eps_type subspace -eps_tol 1e-6 -eps_monitor

-st_ksp_type cg -st_pc_type jacobi -st_ksp_rtol 1e-5

specifies some additional options for the solution of this linear system. In par-
ticular, this example selects the CG solver with Jacobi preconditioning and a
relative tolerance of 10−5. The -st_ prefix signifies that the option corresponds
to the linear system within ST.

If an iterative method is used for the linear system solves, usually a slightly
more stringent tolerance must be required of the linear solves relative to the
desired accuracy of the eigenvalue calculation. It is also possible to select any
of the direct linear solvers available in petsc. In this case, the factorization is
only carried out at the beginning of the eigenvalue calculation and this cost is
amortized in each subsequent application of the operator. This is also the case
for iterative methods with preconditioners with high-cost set-up such as ILU.

The application programmer is able to set the desired linear systems solver
options also from within the code. In order to do this, first the context of the
KSP object must be retrieved with the following function

STGetKSP(ST st,KSP *ksp);

The above functionality is also applicable to the other spectral transforma-
tions. In this other example, the spectrum is shifted by σ = 0.5 and several
options are specified for the linear systems

$ program -st_type shift -st_shift 0.5 -st_ksp_type cgs

-st_pc_ilu_levels 1

Similarly, for the shift-and-invert technique with σ = 10:

$ program -st_type sinvert -st_shift 10 -st_pc_type jacobi

— 35 —



3.4. Advanced Usage Chapter 3. ST: Spectral Transformation

The shift-and-invert approach deserves special consideration. In this case, the
coefficient matrix is not a simple matrix but an expression which can be explic-
itly constructed or not, depending on the user’s choice. This issue is examined
in detail next.

3.4.2 Explicit Computation of Coefficient Matrix

Three possibilities can be distinguished regarding the form of the coefficient
matrix of the linear systems of equations associated to the different spectral
transformations. The possible coefficient matrices are:

• Simple: B.

• Shifted: A− σI .

• Axpy: A− σB.

The first case has already been described and presents no difficulty. In the
other two cases, which correspond to the shift-and-invert transformation, there
are three possible approaches:

“shell” To work with the corresponding expression without forming the matrix
explicitly. This is achieved by internally setting a matrix-free matrix with
MatCreateShell.

“inplace” To build the coefficient matrix explicitly. This is done by means of
a MatShift or a MatAXPY operation, which overwrites matrix A with the
corresponding expression. This alteration of matrix A is reversed after the
eigensolution process has finished.

“copy” To build the matrix explicitly, as in the previous option, but using a
working copy of the matrix, that is, without modifying the originall matrix
A.

The default behavior is to build the coefficient matrix explicitly in a copy of A
(option “copy”). The user can change this as in the following example

$ program -st_type sinvert -st_shift 10 -st_pc_type jacobi

-st_sinvert_matmode shell
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As always, the procedural equivalent is also available for specifying this option
in the code of the program:

STSinvertSetMatMode(ST st,STSinvertMatMode mode);

The user must consider which approach is the most appropriate for the par-
ticular application. The different options have advantatges and drawbacks. The
first approach is the simplest one but severely restricts the number of possibilities
available for solving the system, in particular most of the petsc preconditioners
would not be available, including direct methods. The only preconditioners that
can be used in this case are Jacobi (only if matrices A and B have the operation
MATOP_GET_DIAGONAL) or a user-defined one.

The second approach (“inplace”) can be much faster, specially in the gen-
eralized case. A more important advantage of this approach is that, in this
case, the linear system solver can be combined with any of the preconditioners
available in petsc, including those which need to access internal matrix data-
structures such as ILU. The main drawback is that, in the generalized problem,
this approach probably makes sense only in the case that A and B have the same
sparse pattern, because otherwise the function MatAXPY can be very inefficient.
If the user knows that the pattern is the same (or a subset), then this can be
specified with the function

STSinvertSetMatStructure(ST st,MatStructure str);

Note that when the value of the shift σ is very close to an eigenvalue, then
the linear system will be ill-conditioned and using iterative methods may be
problematic. On the other hand, in symmetric definite problems, the coefficient
matrix will be indefinite whenever σ is a point in the interior of the spectrum
and in that case it is not possible to use a symmetric definite factorization
(cholesky or icc).

The third approach (“copy”) uses more memory but avoids a potential prob-
lem that could appear in the “inplace” approach: the recovered matrix might
be slightly different from the original one (due to roundoff).

3.4.3 Shell Transformations

The ST package allows the user to define new spectral transformations by means
of the shell type, in a similar way as shell preconditioners or shell matrices.
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This tool is intended for simple spectral transformations. For more sophisticated
transformations, the user should register a new ST type (see section 4.2 for
details).

At least, user-defined spectral transformations have to define how the opera-
tor is to be applied to a vector. Optionally, it can also specify the way in which
computed eigenvalues must be transformed back to the solution of the original
eigenproblem. An example program is provided in the slepc distribution in
order to illustrate the use of shell transformations.

The function

STShellSetApply(ST,int(*)(void*,Vec,Vec),void*);

has to be invoked after the creation of the ST object in order to provide a routine
that applies the operator to a vector. And the function

STShellSetBackTransform(ST,int(*)(void*,PetscScalar*,PetscScalar*));

can be used optionally to specify the routine for the back-transformation of
eigenvalues. The two functions provided by the user receive a pointer to a user-
defined context which can contain any useful information. This context must
be passed as the last argument in the call to STShellSetApply.

Finally, the application programmer can use the following function

STShellSetName(ST,char*);

to specify a name for the new shell transformation in order to identify it in the
program’s output (STView).
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Chapter 4

Relation with petsc

slepc relies on petsc for all the features which are not directly related to eigen-
value problems. All the functionality associated to vectors and matrices as well
as linear systems of equations is provided by petsc. Also, low level details
are inherited directly from petsc. In particular, the parallelism within slepc
methods is handled completely by petsc’s vector and matrix modules.

slepc only contains high level objects, as depicted in figure 1.1. These object
classes have been designed and implemented following the philosophy of other
high level objects in petsc. In this way, slepc benefits from a number of petsc’s
good properties such as the following (see petsc users guide for details):

• Portability and scalability in a wide range of platforms.

• Support for profiling of programs:

– Display performance statistics with -log_summary, including also
slepc’s objects. The collected data are flops and execution times
as well as information about parallel performance.

– Profile application codes with user-defined events.

39



4.1. Supported Matrix Objects Chapter 4. Relation with petsc

– Direct wall-clock timing with PetscGetTime.

– Display detailed profile information and trace of events.

– Graphical visualization of events with MPE.

• Support for debugging of programs:

– Debugger startup and attachment of parallel processes.

– Automatic generation of back-traces of the call stack.

– Detection of memory leaks.

• A number of viewers for visualization of data, including graphics viewers.

• Interface to external software such as matlab
r©.

• Easy handling of runtime options.

This chapter discusses several issues related to the interaction between slepc
and petsc which can be important for the user.

4.1 Supported Matrix Objects

Methods implemented in the EPS module merely require vector operations and
matrix-vector products. In petsc, mathematical objects such as vectors and
matrices have an interface which is independent of the underlying data struc-
tures. slepc manipulates vectors and matrices via this interface and, therefore,
it can be used with any of the matrix representations provided by petsc, in-
cluding dense, sparse, block-diagonal and symmetric formats, either sequential
or parallel.

The above statement must be reconsidered when using EPS in combination
with ST. As explained in chapter 3, in many cases the operator associated to
a spectral transformation not only consists in pure matrix-vector products but
also other operations may be required as well, most notably a linear system
solve (see table 3.2). In this case, the limitation is that there must be support
for the requested operation for the selected matrix representation. For instance,
if one wants to use cholesky for the solution of the linear systems, then it may
be necessary to work with a symmetric matrix format such as MATSEQSBAIJ.
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Shell Matrices. In many applications, the matrices that define the eigenvalue
problem are not available explicitly. Instead, the user knows a way of applying
these matrices to a vector.

An intermediate case is when the matrices have some block structure and
the different blocks are stored separately. There are numerous situations in
which this occurs, such as the discretization of equations with a mixed finite-
element scheme. An example is the eigenproblem arising in the stability analysis
associated with Stokes problems,

[

A C

CH 0

] [

x

p

]

= λ

[

B 0

0 0

][

x

p

]

, (4.1)

where x and p denote the velocity and pressure fields. Similar formulations also
appear in many other situations, such as the quadratic eigenvalue problem, see
equation (A.9), or the singular value decomposition (A.12).

Many of these problems can be solved by reformulating them as a reduced-
order standard or generalized eigensystem, in which the matrices are equal to
certain operations of the blocks. These matrices are not computed explicitly to
avoid losing sparsity.

All these cases can be easily handled in slepc by means of shell matrices.
These are matrices which do not require explicit storage of the component val-
ues. Instead, the user must provide subroutines for all the necessary matrix
operations, typically only the application of the linear operator to a vector.

Shell matrices, also called matrix-free matrices, are created in petsc with
the command MatCreateShell. Then, the function MatShellSetOperation is
used to provide any user-defined shell matrix operations (see the petsc docu-
mentation for additional details). Several examples are available in slepc which
illustrate how to solve a matrix-free eigenvalue problem.

In the simplest case, defining matrix-vector product operations (MATOP_MULT)
is enough for using EPS with shell matrices. However, in the case of generalized
problems, if matrix B is also a shell matrix then it may be necessary to define
other operations in order to be able to solve the linear system successfully, for ex-
ample MATOP_GET_DIAGONAL to use Jacobi preconditioning. On the other hand,
if the shift-and-invert ST is to be used, then in addition it may also be necessary
to define MATOP_SHIFT or MATOP_AXPY (see section 3.4.2 for discussion).
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4.2 Extending slepc

Shell matrices are a simple mechanism of extensibility, in the sense that the
package is extended with new user-defined matrix objects. Once the new matrix
has been defined, it can be used by slepc in the same way as the rest of the
matrices as long as the required operations are provided.

A similar mechanism is available in slepc also for extending the system
incorporating new spectral transformations. This is done by using the STSHELL

spectral transformation in which the user defines how the operator is applied to
a vector and optionally how the computed eigenvalues are transformed back to
the solution of the original problem (see section 3.4.3 for details).

slepc further supports extensibility by allowing application programmers to
code their own subroutines for unimplemented features such as new eigensolvers
or new spectral transformations. It is possible to register these new methods to
the system and use them as the rest of standard subroutines.

For example, to implement the Subspace Iteration method with symmetric
projection, one could copy the slepc code associated to the subspace solver,
modify it and register a new EPS type with the following line of code

EPSRegister("newsubspace",0,"EPSCreate_NEWSUB",EPSCreate_NEWSUB);

After this call, the new solver could be used in the same way as the rest of slepc
solvers. For instance,

$ program -eps_type newsubspace

EPSRegister can be used to register new types whose code is linked into the
executable. To register types in a dynamic library use EPSRegisterDynamic.
In a similar way, STRegister and STRegisterDynamic can be used to register
new spectral transformation types.

4.3 Fortran Interface

slepc provides an interface for Fortran 77 programmers, very much like petsc.
As in the case of petsc, there are slight differences between the C and Fortran
slepc interfaces, due to differences in Fortran syntax. For instance, the error
checking variable is the final argument of all the routines in the Fortran interface,
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in contrast to the C convention of providing the error variable as the routine’s
return value.

The following code is a sample program written in Fortran 77. It is the
Fortran equivalent of the program given in section 1.5 and can be found in
${SLEPC_DIR}/src/examples/ex1f.F.

!

! Program usage: mpirun -np n ex1f [-help] [-n <n>] [all SLEPc options]
!

! Description: Simple example that solves an eigensystem with the EPS object.
5 ! The standard symmetric eigenvalue problem to be solved corresponds to the

! Laplacian operator in 1 dimension.
!
! The command line options are:

! -n <n>, where <n> = number of grid points = matrix size
10 !

!/*T
! Concepts: SLEPc - Basic functionality
! Routines: SlepcInitialize(); SlepcFinalize();

! Routines: EPSCreate(); EPSSetFromOptions();
15 ! Routines: EPSSolve(); EPSDestroy();

!T*/
!

! ----------------------------------------------------------------------
!

20 program main

implicit none

#include "finclude/petsc.h"
#include "finclude/petscvec.h"

25 #include "finclude/petscmat.h"

#include "finclude/slepc.h"
#include "finclude/slepceps.h"

! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

30 ! Declarations
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
!

! Variables:
! A operator matrix

35 ! eps eigenproblem solver context

Mat A

EPS eps
EPSType type

40 PetscReal tol, error
PetscScalar kr, ki

integer rank, n, nev, ierr, maxit, i, its, nconv
integer col(3), Istart, Iend
PetscTruth flg

45 PetscScalar value(3)
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! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

! Beginning of program
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

50

call SlepcInitialize(PETSC_NULL_CHARACTER,ierr)
call MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr)

n = 30
call PetscOptionsGetInt(PETSC_NULL_CHARACTER,’-n’,n,flg,ierr)

55

if (rank .eq. 0) then

write(*,100) n
endif

100 format (’1-D Laplacian Eigenproblem, n =’,i6)

60

! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

! Compute the operator matrix that defines the eigensystem, Ax=kx
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

65 call MatCreate(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,n,n,A,
& ierr)

call MatSetFromOptions(A,ierr)

call MatGetOwnershipRange(A,Istart,Iend,ierr)
70 if (Istart .eq. 0) then

i = 0

col(1) = 0
col(2) = 1

value(1) = 2.0
75 value(2) = -1.0

call MatSetValues(A,1,i,2,col,value,INSERT_VALUES,ierr)

Istart = Istart+1
endif

if (Iend .eq. n) then
80 i = n-1

col(1) = n-2
col(2) = n-1
value(1) = -1.0

value(2) = 2.0
85 call MatSetValues(A,1,i,2,col,value,INSERT_VALUES,ierr)

Iend = Iend-1
endif
value(1) = -1.0

value(2) = 2.0
90 value(3) = -1.0

do i=Istart,Iend-1
col(1) = i-1

col(2) = i
col(3) = i+1

95 call MatSetValues(A,1,i,3,col,value,INSERT_VALUES,ierr)

enddo

call MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY,ierr)

— 44 —



Chapter 4. Relation with petsc 4.3. Fortran Interface

call MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY,ierr)
100

! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
! Create the eigensolver and display info

! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

105 ! ** Create eigensolver context

call EPSCreate(PETSC_COMM_WORLD,eps,ierr)

! ** Set operators. In this case, it is a standard eigenvalue problem
call EPSSetOperators(eps,A,PETSC_NULL_OBJECT,ierr)

110

! ** Set solver parameters at runtime
call EPSSetFromOptions(eps,ierr)

! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

115 ! Solve the eigensystem
! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

call EPSSolve(eps,ierr)
call EPSGetIterationNumber(eps,its,ierr)

120 if (rank .eq. 0) then
write(*,*)

write(*,140) its
endif

140 format (’ Number of iterations of the method: ’,I4)

125

! ** Optional: Get some information from the solver and display it

call EPSGetType(eps,type,ierr)
if (rank .eq. 0) then
write(*,110) type

130 endif
110 format (’ Solution method: ’,A)

call EPSGetDimensions(eps,nev,PETSC_NULL_INTEGER,ierr)
if (rank .eq. 0) then

write(*,120) nev
135 endif

120 format (’ Number of requested eigenvalues:’,I2)

call EPSGetTolerances(eps,tol,maxit,ierr)
if (rank .eq. 0) then

write(*,130) tol, maxit
140 endif

130 format (’ Stopping condition: tol=’,1PE10.4,’, maxit=’,I6)

! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

! Display solution and clean up
145 ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

! ** Get number of converged eigenpairs
call EPSGetConverged(eps,nconv,ierr)

if (rank .eq. 0) then
150 write(*,150) nconv

endif
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150 format (’ Number of converged approximate eigenpairs:’,I2)

! ** Display eigenvalues and relative errors
155 if (nconv.gt.0 .and. rank.eq.0) then

write(*,*)
write(*,*) ’ k ||Ax-kx||/||kx||’
write(*,*) ’ ----------------- ------------------’

do i=0,nconv-1
160 ! ** Get converged eigenpairs: i-th eigenvalue is stored in kr

! ** (real part) and ki (imaginary part)
call EPSGetEigenpair(eps,i,kr,ki,PETSC_NULL,PETSC_NULL,ierr)

! ** Compute the relative error associated to each eigenpair
165 call EPSComputeRelativeError(eps,i,error,ierr)

if (ki.ne.0.D0) then

write(*,180) kr, ki, error
else

170 write(*,190) kr, error

endif
enddo

write(*,*)
endif

175 180 format (1P,E11.4,E11.4,’ j ’,E12.4)
190 format (1P,’ ’,E12.4,’ ’,E12.4)

! ** Free work space
call EPSDestroy(eps,ierr)

180 call MatDestroy(A,ierr)

call SlepcFinalize(ierr)

end

4.4 Complex Numbers

petsc supports the use of complex numbers in application programs written
in C, C++ and Fortran. Currently, this is done by defining the data type
PetscScalar either as a real or complex number. This implies that two different
versions of the petsc libraries can be built separately, one for real numbers and
one for complex numbers, but they cannot be used at the same time. [Note:
this may change in future versions of petsc.]

slepc inherits this property. To build the real version of the slepc libraries,
the flag BOPT must be set to g or O (debug or optimized flavors, respectively).
To build the complex version, one of BOPT=[g_complex,O_complex] must be
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used. Application programs must be compiled also specifying the appropriate
BOPT value to link with the desired libraries.

In slepc it is not possible to completely separate real numbers and complex
numbers because the solution of non-symmetric real-valued eigenvalue problems
can be complex. slepc has been designed trying to provide a uniform interface
to manage all the possible cases. This section clarifies the differences between
the interface in each of the two versions, mainly in the format of the computed
solution and the shifts.

Real slepc. In this case, all Mat and Vec objects are real. The computed
approximate solution returned by the function EPSGetEigenpair is stored in the
following way: kr and ki contain the real and imaginary parts of the eigenvalue,
respectively, and xr and xi contain the associated eigenvector. Two cases can
be distinguished:

• When ki is zero, it means that the j-th eigenvalue is a real number. In
this case, kr is the eigenvalue and xr is the corresponding eigenvector. In
this case, xi is set to zero.

• If ki is different from zero, then the j-th eigenvalue is a complex number
and, therefore, it is part of a complex conjugate pair. Thus, the j-th
eigenvalue is kr+ i·ki. With respect to the eigenvector, xr stores the
real part of the eigenvector and xi the imaginary part, that is, the j-
th eigenvector is xr+ i·xi. The sign of the imaginary part is returned
correctly in any case by function EPSGetEigenpair.

Complex slepc. In this case, all Mat and Vec objects are complex. The
computed approximate solution returned by the function EPSGetEigenpair is
the following: kr contains the (complex) eigenvalue and xr contains the corre-
sponding (complex) eigenvector. In this case, ki and xi are not used (set to
0).

Shifts. Some packages such as arpack support the use of complex shifts even
when working with real arithmetic. Currently, this is not supported in slepc.
The shifts in the ST package are defined as PetscScalar variables and, therefore,
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the complex version of the libraries must be used in order to be able to specify
complex shifts.

4.5 Makefiles

slepc uses a makefile system very similar to that of petsc. All platform specific
setting are taken directly from the petsc installation. During installation of the
slepc libraries, only the file ${SLEPC_DIR}/bmake/${PETSC_ARCH}/packages

must be edited to indicate the presence of optional software packages such as
arpack.

With respect to the application program makefiles, they are very easy to set
up just by including one file from the slepc makefile system. All the neces-
sary petsc definitions are loaded automatically. The following sample makefile
illustrates how to build C and Fortran programs:

include ${SLEPC_DIR}/bmake/slepc_common

ex1: ex1.o slepc_chkopts
-${CLINKER} -o ex1 ex1.o ${SLEPC_LIB}

5 ${RM} ex1.o

ex1f: ex1f.o slepc_chkopts
-${FLINKER} -o ex1f ex1f.o ${SLEPC_FORTRAN_LIB} ${SLEPC_LIB}
${RM} ex1f.o
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A.1 The Eigenvalue Problem

The eigenvalue problem is a central topic in numerical linear algebra. In the
standard formulation, the problem consists in the determination of λ ∈ C for
which the equation

Ax = λx (A.1)

has nontrivial solution, where A ∈ Cn×n and x ∈ Cn. The scalar λ and the
vector x are called eigenvalue and eigenvector, respectively.

In many applications, the problem is formulated as Ax = λBx, which is
known as the generalized eigenvalue problem. Usually, this problem is solved
by reformulating it in standard form, as discussed in section A.1.3.

Similarity transformations preserve eigenvalues. Two matrices A and Ã are
similar if a non-singular matrix X exists such that A = XÃX−1. Many methods
for eigenvalue problems rely on such transformations in order to reduce the
matrix to a canonical form from which it is easier to retrieve eigenpairs. Among
these methods are the ones considered to be the fastest and most accurate
methods, such as Divide and Conquer, QR Iteration and Jacobi methods. For
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an up-to-date survey on methods for eigenvalue problems see [Golub and van der
Vorst, 2000].

However, these methods are not appropriate for large sparse matrices because
similarity transformations destroy sparsity. Moreover, most applications require
only to know a few selected eigenvalues and not the entire spectrum. For these
reasons, other methods have become popular for sparse problems.

A.1.1 Basic Methods

Methods for sparse eigenproblems obtain the solution from the information gen-
erated by the application of the operator to various vectors. That is, the matrix
is only used in matrix-vector products. This not only maintains sparsity but
allows to solve problems in which matrices are not available explicitly. A catalog
of such methods can also be found in [Golub and van der Vorst, 2000]. For a
more comprehensive description see [Bai et al., 2000].

The most basic method of this kind is the Power Iteration, in which an initial
vector is repeatedly premultiplied by the matrix A and conveniently normalized.
After a certain number of iterations, this vector converges to the dominant
eigenvector, which is the one associated to the eigenvalue with largest module.
In many situations, the particular properties of the spectrum can prevent the
Power Method from converging. Also, it is usual to require more than just one
eigenvalue. For these reasons, more powerful methods are required.

The Simultaneous Iteration or Subspace Iteration is the generalization of
the Power Method. In this method, the matrix is applied to a set of m vectors
simultaneously, and orthogonality is enforced explicitly in order to avoid the
convergence of all these vectors to the dominant eigenvector.

In some sense, the power method throws away potentially useful spectral
information during the course of the iteration. At the k-th iteration, the al-
gorithm overwrites the vector Ak−1x(0) with Akx(0), where x(0) is the initial
vector. However, it turns out to be useful to keep the previous vector instead of
overwriting it, and by extension to keep the whole set of previous vectors. The
subspace

Km(A, v) ≡ span
{

v, Av, A2v, . . . , Am−1v
}

, (A.2)

is called the m-th Krylov subspace corresponding to A and v. Methods which
use linear combinations of vectors in this space to extract spectral information
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are called Krylov subspace methods. The most basic methods of this kind are
the Lanczos, non-symmetric Lanczos and Arnoldi algorithms.

The basic idea of these methods is to construct approximate eigenvectors in
the Krylov subspace Km(A, v). A Ritz pair is any pair (λi, xi) that satisfies the
Galerkin condition,

(Axi − λixi, v) = 0 , ∀v ∈ Km(A, v) . (A.3)

That is, the Ritz pair satisfies the eigenvalue-eigenvector relationship in the
projection onto a smaller space. If the component orthogonal to this space is
sufficiently small then the Ritz pair is a good approximation to an eigenpair of
A. The procedure for constructing approximate eigenpairs in this way is called
Rayleigh-Ritz projection.

The following is the Lanczos method:

Select an initial vector v1 of norm 1
Initialize β1 = 0, v0 = 0
For j = 1, 2, . . . , k

wj = Avj − βjvj−1

αj = vH
j wj

wj = wj − αjvj

βj+1 = ‖wj‖2
vj+1 = wj/βj+1

end

This algorithm builds an orthonormal basis Vk = [v1, . . . , vk] and computes a
tridiagonal matrix Tk, where αj and βj form the diagonal and sub-diagonal
elements, respectively, so that Tk = V T

k AVk . Let (λ, y) be an eigenpair of Tk,
i.e., Tky = λy, then λ is a Ritz value of A and the corresponding Ritz vector is
x = Vky. In practice, the Lanczos vectors vj may lose orthogonality when the
above algorithm is carried out in floating-point arithmetic. Some strategies can
be used to avoid this problem, including partial or selective re-orthogonalization
and elimination of spurious eigenvalues.

In order to be able to solve non-symmetric eigenproblems, the non-symmetric
Lanczos method uses two bi-orthonormal basis to construct a non-symmetric
tridiagonal matrix.
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The Arnoldi method, which is also intended for the non-symmetric case,
builds a k-step Arnoldi factorization,

AVk = VkHk + fkeT
k , (A.4)

where the columns of Vk are orthonormal, V H
k fk = 0, and Hk is an upper

Hessenberg matrix of order k. As in the Lanczos method, eigenpairs of Hk can
be used for building Ritz pairs. The Arnoldi algorithm can be written as follows.

Select an initial vector v1 of norm 1
For j = 1, 2, . . . , k

hij = vH
j Avi, i = 1, 2, . . . , j

wj = Avj −
∑j

i=1 hijvi

hj+1,j = ‖wj‖2 . If hj+1,j = 0 Stop
vj+1 = wj/hj+1,j

end
fk = hk+1,kvk+1

The above algorithm uses the classical Gram-Schmidt orthogonalization scheme
when constructing the basis. Other schemes are usually preferred in order to
avoid problems with round-off errors.

A.1.2 Convergence

The Power Method is used to compute a single eigenvector. A simple modifica-
tion can be done to find the k dominant eigenvectors: once the eigenpair (λ1, x1)
is computed, a transformation is applied to the matrix A to move λ1 to the in-
terior of the spectrum, so that the second largest eigenvalue λ2 becomes the
dominant eigenvalue of the transformed matrix. This process is repeated until
the k dominant eigenvalues have been found. This technique is called deflation

and it appears implicitly in many other algorithms.
In methods such as Subspace Iteration or Lanczos, the convergence rate is

different from one eigenpair to another. Sometimes the cost of the algorithm can
be reduced by locking eigenvectors once they have already converged to desired
accuracy. This technique is another form of deflation.

Convergence problems can arise in the presence of multiple or clustered eigen-
values. Selecting a sufficiently large number of basis vectors can usually avoid
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the problem. However, convergence can still be very slow and acceleration tech-
niques must be used. Usually, these techniques consists in computing eigenpairs
of a transformed operator and then recovering the solution of the original prob-
lem.

The aim of these transformations is twofold. On one hand, they allow to
obtain eigenvalues other than those lying in the boundary of the spectrum. On
the other hand, the eigenvalues of interest are well separated in the transformed
spectrum thus leading to fast convergence. Sometimes, the transformation can
also be constructed to explicitly damp unwanted eigenvalues.

The simplest transformation is to use the shifted matrix A + σI . Other
transforms are shift-and-invert (A − σI)−1, Cayley (A − σI)−1(A + σI) and,
in general, polynomial p(A) or even rational p(A)q(A)−1 transformations. The
most commonly used one is the shift-and-invert transformation, which allows
to compute the eigenvalues closest to σ with very good separation properties.
When using this approach, a linear system of equations, (A − σI)y = x, must
be solved in each iteration of the eigenvalue process.

A.1.3 Non-standard Problems

Although there are specific methods for the generalized eigenvalue problem,
Ax = λBx, it is usually solved by reducing it to standard form. There are
several possibilities for doing this. If B is non-singular, the problem can be
written as

B−1Ax = λx . (A.5)

If B is singular or ill-conditioned, the roles of A and B can be reversed. On the
other hand, if B is symmetric positive definite then the problem is equivalent
to

L−1AL−T y = λy , (A.6)

where y = LT x and L is lower triangular such that B = LLT .

In any case, a system of linear equations must be solved in each iteration of
the eigensolver. For this reason, using the shift-and-invert technique does not
add extra complexity. In this case, after solving the transformed problem

(A− σB)−1Bx = θx , (A.7)
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the eigenvalues of the original problem can be recovered as λ = 1
θ + σ while the

eigenvectors stay the same. Note that this transformation is valid regardless of
the regularity of B.

When using equations (A.5) or (A.7) symmetry is lost. In order to be able
to use methods such as Lanczos which assume a symmetric operator, Euclidean
products and norms must be replaced by B-inner products and B-norms.

In many applications such as the analysis of damped vibrating systems the
eigenproblem to be solved is quadratic,

(Aλ2 + Bλ + C)x = 0 . (A.8)

It is possible to transform this problem to a generalized eigenproblem by increas-
ing the order of the system. For example, let the eigenvector be v = [λx, x]T ,
then the equivalent system is

[

−B −C

I 0

]

v = λ

[

A 0

0 I

]

v . (A.9)

Other linear algebra problems are very closely related to eigenproblems. One of
them is the singular value decomposition (SVD). Let A be a real m× n matrix,
then there exist two orthogonal matrices U ∈ IRm×m, V ∈ IRn×n such that

UTA V = diag(σ1, . . . , σp) , (A.10)

with p = min{m, n} and σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0. The values σi are called
singular values. The relation (A.10) can be expressed as an eigenproblem in
several ways, for example

ATA vi = σ2
i vi , (A.11)

or
[

0 A

AT 0

] [

ui

vi

]

= σi

[

ui

vi

]

. (A.12)

A.1.4 State-of-the-art Methods

One drawback of the Arnoldi algorithm with respect to Lanczos is the increment
of cost and storage as the size of the subspace increases. The solution to this
is to restart the Arnoldi reduction when a certain size is reached. The Implicit
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Restart technique allows to filter away unwanted information from the process.
This leads to a reduced subspace with a basis for which the matrix still has a
Hessenberg form, so that Arnoldi’s process can be continued with a subspace
(rather than with a single vector as with more classical restart techniques).
This Implicitly Restarted Arnoldi method is the one implemented in arpack.
Another strategy called thick-restarting has been proposed to achieve similar
effectiveness while somewhat reducing the complexity.

Krylov subspace methods are projection methods because they project the
original matrix onto a certain subspace. Other projection methods use the
same idea but with a different type of subspace. One of these techniques, called
Rational Krylov Sequence (RKS), combines a spectral transformation such as
shift-and-invert with a modification of the shift in each step. The result is the
generation of the so-called rational Krylov subspace

span
{

v, T SI
1 v, . . . ,

(

T SI
m−1 · · ·T SI

1

)

v
}

, (A.13)

where T SI
j = (A − σjB)−1B. Since the matrix A− σjB changes at every step,

it is not feasible to compute a factorization at the beginning and then reuse the
factors to solve the system at each iteration. Iterative linear solvers may be
preferred in this case.

Another approach is Davidson’s method which expands the subspace by
orthogonalizing ṽ with respect to the previous basis vectors. This vector ṽ is
the solution of the linear system of equations (DA − θI)ṽ = r, where DA is the
diagonal of matrix A, r is the defect r = Au − θu, and (θ, u) is a Ritz pair.
This method was enhanced later by introducing a correction ∆u for u in the
subspace orthogonal to u. In this case, the linear system to be solved is

(I − uuH)(A− θI)(I − uuH)∆u = −r , (A.14)

and the whole process constitutes the Jacobi-Davidson method.
Finally, the block-oriented analogues of some of the methods described above

can be very effective in some situations. An example of this is the ABLE method,
a block Lanczos algorithm which adaptively adjusts the block size.

A.1.5 Available Software

The development of high-quality software for eigenvalue problems starts with the
book edited by Wilkinson and Reinsch [1971] which contained implementations
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in Algol60 of many algorithms for the solution of linear systems of equations
and eigenvalue problems. In the early 1970’s, these algorithms gave way to
the packages linpack and eispack, which were written in Fortran. eispack

[Smith et al., 1970], which concentrates on eigenvalue problems, is the first li-
brary approaching this kind of problems in a rigorous way. These libraries are
the basement of more recent software such as the commercial packages imsl

and nag, or even matlab
r©. In the 1990’s, linpack and eispack were re-

placed by lapack [Anderson et al., 1992], a completely rewritten library which
already guarantees reliability, portability and efficiency in a systematic way. It
implements block-oriented versions of the algorithms and makes extensive use
of the level 3 Basic Linear Algebra Subprograms (blas). Most of the algorithms
for eigenvalue problems included in lapack have their parallel counterpart in
scalapack [Blackford et al., 1997], today the main source of parallel algorithms
for dense linear algebra problems.

Unlike in dense methods, there are few standards for basic sparse opera-
tions in the spirit of blas. This is due to the fact that sparse storage is more
complicated, admitting of more variation, and therefore less standardized. For
this reason, sparse libraries have an added level of complexity. This holds even
more so in the parallel case, where additional indexing information is needed to
specify which matrix elements are on which processor.

The first implementations of algorithms for sparse matrices appeared in the
journal Transactions on Mathematical Software, for example lopsi [Stewart
and Jennings, 1981] which implements the Subspace Iteration method. This
subroutine required a prescribed storage format for the sparse matrix, which is
an obvious limitation.

An alternative way of matrix representation is by means of a user-provided
subroutine for the matrix-vector product. Apart from being format-independent
this solution allows to solve problems in which the matrix is not available ex-
plicitly. The drawback is the restriction to a fixed-prototype subroutine. This is
the option used in srrit [Bai and Stewart, 1997], which also implements Sub-
space Iteration, and arncheb [Braconnier, 1993], which implements the Arnoldi
method with explicit restart. A description and comparison of some of these
packages can be found in [Lehoucq and Scott, 1996].

A good solution for the matrix representation problem is the well-known re-
verse communication interface, a technique which allows to implement iterative
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methods disregarding the implementation details of various operations. When-
ever the iterative method subroutine needs the results of one of the operations,
it returns control to the user’s subroutine that called it. The user’s subroutine
then invokes the module that performs the operation. The iterative method
subroutine is invoked again with the results of the operation. This scheme is
very useful when, for example, the method requires not only the product by the
matrix but also the product by the transpose. This is the case of qmrpack

[Freund and Nachtigal, 1996], which implements the non-symmetric Lanczos
method.

More recent software packages implement advanced techniques and are pre-
pared for parallel execution. This is the case of arpack, blzpack, planso,
and trlan. All of them have been integrated in slepc by means of a wrapper.
A description of these packages can be found in section B.5.

A.2 Review of petsc

The solution to the problem of using distributed-memory computers efficiently
is the combination of the message-passing programming model and carefully
designed and implemented parallel numerical libraries. This approach is also
appropriate for other architectures such as clusters and NUMA (non-uniform
memory access) shared-memory computers. This combination allows to strike
a balance between code performance and ease of use.

Since the advent of the Message Passing Interface (MPI), the message-
passing model has been widely used and several parallel numerical libraries
have been developed. One of them is petsc [Balay et al., 2004], whose approach
is to encapsulate mathematical algorithms using object-oriented programming
techniques which allow to manage the complexity of efficient numerical message-
passing codes. All the petsc software is freely available and used around the
world in a variety of application areas.

The design philosophy is not to try to completely conceal parallelism from
the application programmer. Rather, the user initiates a combination of sequen-
tial and parallel phases of computations, but the library handles the detailed
message passing required during the coordination of computations. Some of the
design principles are described in [Balay et al., 1997].

petsc focuses on components required for the solution of partial differential
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Figure A.1: Organization of the petsc toolkit.

equations (PDEs) and related problems. In this kind of problems, a geometric
decomposition of the solution domain among the processors is the most appro-
priate approach, leading to data locality and therefore to scalability (at least
theoretically). petsc is designed to provide efficient tools for handling problems
arising from the discretization of PDEs by means of regular meshes (e.g. finite
differences) as well as unstructured meshes (e.g. finite elements).

petsc is built around a variety of data structures and algorithmic objects.
Figure A.1 shows a diagram of some of these components, and illustrates the
library’s hierarchical organization. The application programmer works directly
with these objects rather than concentrating on the underlying data structures.
He has to consider the interrelationships among different pieces of petsc, and
employ the level of abstraction that is most appropriate for a particular problem.

petsc components are discussed in detail in the users manual [Balay et al.,
2004]. Each component manipulates a particular family of objects (for instance,
vectors) and the operations one would like to perform on the objects. The
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three basic abstract data objects are index sets, vectors and matrices. Built on
top of this foundation are various classes of solver objects, which encapsulate
virtually all information regarding the solution procedure for a particular class
of problems, including the local state and various options such as convergence
tolerances, etc. Some of the petsc modules deal with

• index sets, including permutations, for indexing into vectors, renumbering,
etc;

• vectors;

• matrices (generally sparse);

• distributed arrays (useful for parallelizing regular grid-based problems);

• Krylov subspace methods;

• preconditioners, including multigrid and sparse direct solvers;

• nonlinear solvers; and

• timesteppers for solving time-dependent (nonlinear) PDEs.

Each of these components consists of an abstract interface (simply a set of call-
ing sequences) and one or more implementations using particular data struc-
tures. petsc is written in C, which lacks direct support for object-oriented
programming. However, it is still possible to take advantage of the three basic
principles of object-oriented programming to manage the complexity of such a
large package. petsc uses data encapsulation in both vector and matrix data
objects. Application code access data through function calls. Also, all the oper-
ations are supported through polymorphism. The user calls a generic interface
routine which then selects the underlying routine which handles the particular
data structure. This is implemented by structures of function pointers. Finally,
petsc also uses inheritance in its design. All the objects are derived from an
abstract base object. From this fundamental object, an abstract base object is
defined for each petsc object (Mat, Vec and so on) which in turn has a variety
of instantiations that, for example, implement different matrix storage formats.

petsc provides clean and effective codes for the various phases of solving
PDEs, with a uniform approach for each class of problems. This design enables
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easy comparison and use of different algorithms (for example, to experiment
with different Krylov subspace methods, preconditioners, or truncated Newton
methods). Hence, petsc provides a rich environment for modeling scientific
applications as well as for rapid algorithm design and prototyping.

Options can be specified by means of calls to subroutines in the source code
and also as command-line arguments. Runtime options allow the user to test dif-
ferent tolerances, for example, without having to recompile the program. Also,
since petsc provides a uniform interface to all of its linear solvers —the Conju-
gate Gradient, GMRES, etc. — and a large family of preconditioners —block
Jacobi, overlapping additive Schwarz, etc. —, one can compare several combi-
nations of method and preconditioner by simply specifying them at execution
time.

The components enable easy customization and extension of both algorithms
and implementations. This approach promotes code reuse and flexibility, and
separates the issues of parallelism from the choice of algorithms. The petsc
infrastructure creates a foundation for building large-scale applications. Other
advantages of petsc are the following:

• High portability due to an elaborate Makefile system. Different architec-
ture builds can coexist in the same installation. Where available, dynamic
libraries are used to reduce disk space of executable files.

• Support for debugging and profiling: attachment to external debuggers,
event logging, subroutine timing, convergence monitoring, etc. petsc also
has built-in graphics capabilities which allow for sparse pattern visualiza-
tion, graphic convergence monitoring, operator’s spectrum visualization
and other user-defined operations.

• Programming interface for Fortran.
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Catalog of Solvers

This appendix provides a short description of all the eigenvalue solvers which
are available in slepc, including the interfaces to external libraries. In the
case of “native” methods, that is, those methods that are implemented directly
in slepc, the description includes a sketch of the algorithm which is actually
implemented.

Table B.1 summarizes the available native methods and shows the default
values for some of their parameters.

Method ncv max_it tol

power 1 max(2000, 100N) 10−7

rqi 1 max(100, N) 10−7

subspace max(2 · nev, nev + 8) max(100, N) 10−7

arnoldi max(2 · nev, nev + 8) max(100, N) 10−7

Table B.1: Default parameter values for native algorithms available in slepc.
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B.1 power

The Power Method is the simplest vector iteration method. It consists in pre-
multiplying an initial vector by matrix A repeatedly. Note that this technique
can sometimes fail in the case of general matrices or when the dominant eigen-
value is not unique.

Algorithm B.1 (Basic Power Method)

Input: Matrix A and initial vector v0

Output: Approximated dominant eigenpair (θ, v)
Set z = v0

For k = 1, 2, . . . , p
v = z/‖z‖2
z = OPv
θ = vHz

end

In the algorithm above, matrix OP represents the operator, which can be any
of the expressions in table 3.2. Thus, the algorithm can be converted to the
Inverse Iteration by simply specifying the sinvert transformation.

B.2 rqi

The Rayleigh Quotient Iteration is similar to the Power Iteration, but with a
variable shift, ρk. This EPS method can only be used in combination with the
sinvert transformation.

Algorithm B.2 (RQI, Rayleigh Quotient Iteration)

Input: Matrix A and initial vector v0

Output: Approximated dominant eigenpair (θ, y)
Set v = v0

w = Bv
Normalize v and w
For k = 1, 2, . . . , p

y = OPw, θ = wHy
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w = By, η = ‖y‖B
Normalize y and w
ρk+1 = ρk + θ/η2

if θ > tol−1/2, stop
end

B.3 subspace

The Subspace Iteration method is a generalization of the Power Method to m
initial vectors. Ortogonality of vectors is enforced every inner iterations. The
current implementation locks converged eigenpairs.

Algorithm B.3 (Subspace Iteration)

Input: Matrix A and set of initial vectors Z ∈ Cn×m

Output: m approximated dominant Schur vectors V
Factorize V R = Z
For k = 1, 2, . . . , p

Y = OP innerV
Factorize V R = Y
Compute the projected matrix, H = V HAV
Solve the reduced problem, H = SΘSH

V = V S
end

The default value of the parameter inner is 10 for Hermitian problems and 4
for non-Hermitian ones. This value can be changed with the command-line op-
tion -eps_subspace_inner of specified in the program source with the function
EPSSubspaceSetInner.

B.4 arnoldi

The version of the Arnoldi method implemented in slepc uses locking and ex-
plicit restart. The orthogonalization technique can be chosen as described in
chapter 2.
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Algorithm B.4 (Arnoldi)

Input: Matrix A, the initial vector v0, and number of steps k
Output: (Vk, Hk, fk) so that AVk = VkHk + fkeT

k

Normalize v0

Restart loop
For j = 1, 2, . . . , k

w = OPvj

For i = 1, 2, . . . , j
hij = (w, vi)
w = w − hijvi

end
hj+1,j = ‖w‖2 . If hj+1,j = 0 Stop

Reduce H to (real) Schur form, H = SH̃ST

V = V S
end
Lock converged eigenpairs
Choose new initial vector

end

B.5 Wrappers to External Libraries

slepc interfaces to several external libraries for the solution of eigenvalue prob-
lems. This section includes a short description of each of these packages as well
as some hints for using them with slepc.

To use these eigensolvers, one needs to do the following.

1. Install the external software.

2. Enable the utilization of the external software from slepc by editing the
file ${SLEPC_DIR}/bmake/${PETSC_ARCH}/packages. For example, to use
arpack, one would specify the following variables with the appropriate
paths:

ARPACK_INCLUDE =
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ARPACK_LIB = -L/home/slepc/soft/ARPACK -lparpack -larpack

SLEPC_HAVE_ARPACK = -DSLEPC_HAVE_ARPACK

3. Build the slepc libraries.

4. Use the runtime option -eps_type <type> to select the solver.

An exception to the above is lapack, which should be already available in
the petsc installation.

Table B.2 shows the default values for several parameters in each of the
wrappers. Also, some of the interfaces can provide method-specific parameters.

Method ncv max_it tol

lapack - - -

arpack max(20, 2·nev+1) max(300, d2N/ncve) 10−7

blzpack min(nev+10, 2·nev) max(100, N) 10−7

planso nev max(100, N) 10−7

trlan nev max(100, N) 10−7

Table B.2: Default values for wrappers to external libraries.

lapack

References. [Anderson et al., 1992].

Website. http://www.netlib.org/LAPACK.

Version. 2.0 or later.

Summary. lapack (Linear Algebra PACKage) is a software package for the
solution of many different dense linear algebra problems, including eigen-
value problems.

slepc explicitly creates the operator matrix in dense form and then the
appropriate lapack driver routine is invoked. Therefore, this interface
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should be used only for testing and validation purposes and not in a pro-
duction code. The operator matrix is created by applying the operator to
the columns of the identity matrix.

Currently, only lapack drivers for standard eigenvalue problems are used.
Generalized problems are transformed to standard ones.

Installation. The slepc interface to lapack can be used directly.

arpack

References. [Lehoucq et al., 1998], [Maschhoff and Sorensen, 1996].

Website. http://www.caam.rice.edu/software/ARPACK.

Version. Release 2 (plus patches).

Summary. arpack (ARnoldi PACKage) is a software package for the com-
putation of a few eigenvalues and corresponding eigenvectors of a general
n × n matrix A. It is most appropriate for large sparse or structured
matrices, where structured means that a matrix-vector product w ← Av
requires order n rather than the usual order n2 floating point operations.

arpack is based upon an algorithmic variant of the Arnoldi process called
the Implicitly Restarted Arnoldi Method (IRAM). When the matrix A is
symmetric it reduces to a variant of the Lanczos process called the Implic-
itly Restarted Lanczos Method (IRLM). These variants may be viewed as
a synthesis of the Arnoldi/Lanczos process with the Implicitly Shifted QR
technique that is suitable for large scale problems.

It can be used for standard and generalized eigenvalue problems, both
in real and complex arithmetic. It is implemented in Fortran 77 and
it is based on the reverse communication interface. A parallel version,
parpack, is available with support for both MPI and BLACS.

Installation. In order to use arpack with slepc, both the sequential version
and the parallel version (parpack) have to be installed. First, unbundle
arpack96.tar.gz, then parpack96.tar.gz. Make sure you delete any
mpif.h files that could exist in the directory tree. Also it is recommended
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to unpack the patch files patch.tar.gz and ppatch.tar.gz. After that,
modify the ARmake.inc file and then compile the software with make all.

blzpack

References. [Marques, 1995].

Website. http://www.nersc.gov/~osni/#Software.

Version. 09/1999.

Summary. blzpack (Block LancZos PACKage) is a standard Fortran 77 im-
plementation of the block Lanczos algorithm intended for the solution of
the standard eigenvalue problem Ax = µx or the generalized eigenvalue
problem Ax = µBx, where A and B are real, sparse symmetric matrices.
The development of this eigensolver was motivated by the need to solve
large, sparse, generalized problems from free vibration analysis in struc-
tural engineering. Several upgrades were performed afterwards aiming at
the solution of eigenvalue problems from a wider range of applications.

blzpack uses a combination of partial and selective re-orthogonalization
strategies. It can be run in either sequential or parallel mode, by means of
MPI or PVM interfaces, and it uses the reverse communication strategy.

Installation. For the compilation of the libblzpack.a library, first check the
appropriate architecture file in the directory sys/MACROS and then type
creator -mpi.

Specific options. The slepc interface to this package allows to specify the
block size with the function EPSBlzpackSetBlockSize or at run time
with the option -eps_blzpack_block_size <size>.

For the spectrum slicing feature, slepc allows the programmer to provide
the computational interval with the option -eps_blzpack_interval, or
with the function EPSBlzpackSetInterval in the program source. Also,
the function EPSBlzpackSetMatGetInertia can be used to provide a func-
tion for computing the intertia of the matrix.
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planso

References. [Wu and Simon, 1997].

Website. http://www.nersc.gov/research/SIMON/planso.html.

Version. 1.0 (07/1997).

Summary. This package implements the Lanczos algorithm with partial re-
orthogonalization for symmetric generalized eigenvalue problems. It is
based on the sequential package lanso maintained by B. Parlett. planso

is implemented in Fortran 77 using MPI and the user must provide func-
tions for matrix-vector products.

The current version uses the Omega-recurrence to simulate the loss of or-
thogonality among the Lanczos vectors and maintains semiorthogonality.
This is sufficient to guarantee that eigenvalues are computed accurately,
but under extreme conditions the eigenvectors may not be as accurate as
the eigenvalues.

Installation. Change Make.inc in the top level directory to set appropriate
compiler and flags to use. Then type make lib plib.

trlan

References. [Wu and Simon, 2001].

Website. http://www.nersc.gov/~kewu/trlan.html.

Version. 1.0 (03/1999).

Summary. This package provides a Fortran 90 implementation of the dynamic
thick-restart Lanczos algorithm. This is a specialized version of Lanczos
that targets only the case in which one wants both eigenvalues and eigen-
vectors of a large real symmetric eigenvalue problem that cannot use the
shift-and-invert scheme. In this case the standard non-restarted Lanc-
zos algorithm requires to store a large number of Lanczos vectors which

— 68 —



Appendix B. Catalog of Solvers B.5. Wrappers to External Libraries

can cause storage problems and make each iteration of the method very
expensive.

trlan requires the user to provide a matrix-vector multiplication routine.
The parallel version uses MPI as the message passing layer.

Installation. To install this package, it is necessary to have access to a Fortran
90 compiler. The compiler name and the options used are specified in the
file called Make.inc. To generate the library, type make libtrlan_mpi.a

in the TRLan directory.
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