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1 Introduction

The method of Lanczos [1950] has become one of the most successful methods for approximating
a few eigenvalues of a real symmetric (or complex Hermitian) matrix. Initially, the method did
not receive much attention because it was perceived as a method for tridiagonalizing a matrix,
a task that was better achieved by the Givens and Householder methods. To compete in
accuracy, the Lanczos method had to be supplemented with the explicit orthogonalization of
the computed vectors, which in exact arithmetic would be orthogonal automatically. Many
years later, a renewed interest in the Lanczos method was caused by Paige’s work, which led
to a series of important contributions by many authors, resulting in a better understanding of
the method and widening its usability. Some of these contributions are described in this report
(section 2), in order to motivate the particular variants implemented in slepc (section 3).

The Lanczos method is related to the Arnoldi method in the sense that Lanczos can be seen
as a particular case of Arnoldi when the matrix is symmetric. For this reason, both methods
have some common aspects. The reader is referred to slepc Technical Report STR-4, “Arnoldi
Methods in slepc”, for a detailed description of the Arnoldi method.

This report does not include material regarding the non-symmetric version of the Lanczos
method. Eigensolvers based on this method could be included in future versions of slepc.

2 Description of the Method

This section provides an overview of the Lanczos method and some of its variations, including
techniques for avoiding loss of orthogonality. For more detailed background material the reader
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is referred to [Stewart, 2001b], [Saad, 1992], [Parlett, 1980], [Bai et al., 2000] or [Komzsik, 2003].
See also [Meurant and Strakos, 2006] for details about finite precision issues.

2.1 Basic Lanczos Algorithm

The Lanczos method can be derived from different points of view. One such perspective is
the reduction of an n × n symmetric matrix A to tridiagonal form by means of a three-term
recurrence formula. Given a unit-norm initial vector, v1, and taking β1 = 0, the following
recurrence

βj+1vj+1 = Avj − αjvj − βjvj−1 , (1)

where αj = v∗jAvj and βj+1 = v∗j+1Avj , generates an orthonormal set of Lanczos vectors, vj ,
and a tridiagonal matrix defined as

T =



α1 β2
β2 α2 β3

β3 α3
. . .

. . .
. . . βn
βn αn

 . (2)

It can be shown that vector vn+1 is zero, and that the following relation holds

AV − V T = 0 , (3)

where V = [v1, v2, . . . , vn]. That is, the Lanczos recursion computes a tridiagonal matrix which
is orthogonally similar to A.

When describing an algorithm for computing the Lanczos recurrence, two observations can
be taken into account. The first one is that βj+1 can be computed as ‖Avj − αjvj − βjvj−1‖2
since vj+1 has unit norm. A numerical analysis by Paige [1972] shows that this alternative
improves numerical stability when implementing the recurrence in finite precision arithmetic.
The second observation is that αj can be computed as v∗j (Avj − βjvj−1) since vj and vj−1 are
orthogonal by construction. This alternative is also advocated by Paige [1980]. With these
observations, the basic Lanczos algorithm can be written as in Algorithm 1.

Algorithm 1 (Basic Lanczos – recurrence view)

Choose a unit-norm vector v1
Set β1 = 0
For j = 1, 2, . . .

uj+1 = Avj − βjvj−1
αj = v∗juj+1

uj+1 = uj+1 − αjvj
βj+1 = ‖uj+1‖2
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If βj+1 = 0, stop
vj+1 = uj+1/βj+1

end

Of course, the Lanczos algorithm is most useful when not all n vectors are computed, which
is not viable in the context of very large matrices. If only m Lanczos steps are carried out, then
instead of Eq. 3 the following relation holds

AVm − VmTm = βm+1vm+1e
∗
m, (4)

where Tm is the leading m ×m submatrix of T and Vm = [v1, v2, . . . , vm]. Eq. 4 is the same
that describes the residual of an m-step Arnoldi factorization. That is, the Lanczos process
can also be seen as the computation of the orthogonal projection of matrix A onto the Krylov
subspace Km(A, v1). From this perspective, the Lanczos method is equivalent to the Arnoldi
method, see Algorithm 2.

Algorithm 2 (Basic Lanczos – projection view)

Input: Matrix A, number of steps m, and initial vector v1 of norm 1
Output: (Vm, Tm, vm+1, βm+1) so that AVm − VmTm = βm+1vm+1e

∗
m

For j = 1, 2, . . . ,m
uj+1 = Avj
Orthogonalize uj+1 with respect to Vj (obtaining αj)
βj+1 = ‖uj+1‖2
If βj+1 = 0, stop
vj+1 = uj+1/βj+1

end

In Algorithm 2, the second line in the loop performs a Gram-Schmidt process in order to
orthogonalize vector uj+1 with respect to the columns of Vj , that is, the vectors v1, v2, . . . , vj
(see slepc Technical Report STR-1, “Orthogonalization Routines in slepc”, for details about
Gram-Schmidt). In this operation, j Fourier coefficients are computed. In exact arithmetic, the
first j−2 coefficients are zero, and therefore the corresponding operations need not be carried out
(orthogonality with respect to the first j − 2 vectors is automatic). The other two coefficients
are βj and αj . Note that, according to Paige, the βj computed in this operation should be
discarded and, instead, use the value ‖uj‖2 computed in the previous iteration. From the point
of view of orthogonalization, Algorithm 1 performs a Modified Gram-Schmidt step with just
vectors vj−1 and vj , while computing αj as v∗jAvj would correspond to Classical Gram-Schmidt.
In the following, we will center our discussion on Algorithm 2 because orthogonalization will be
a key aspect of robust Lanczos variants that cope with loss of orthogonality.

As in the case of Arnoldi, since V ∗mvm+1 = 0 by construction, then by premultiplying Eq. 4
by V ∗m

V ∗mAVm = Tm, (5)
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that is, matrix Tm represents the orthogonal projection of A onto the Krylov subspace, and
this fact allows us to compute Rayleigh-Ritz approximations of the eigenpairs of A. Let (λi, yi)
be an eigenpair of matrix Tm, then the Ritz value, λi, and the Ritz vector, xi = Vmyi, can
be taken as approximations of an eigenpair of A. Typically, only a small percentage of the m
approximations are good. This can be assessed by means of the residual norm for the Ritz pair,
which turns out to be very easy to compute:

‖Axi − λixi‖2 = ‖AVmyi − λiVmyi‖2 = ‖(AVm − VmTm)yi‖2 = βm+1|e∗myi|. (6)

The only difference with respect to Arnoldi is that, in Lanczos, Tm is a symmetric tridiagonal
matrix and, therefore, there exist more possible methods for computing its eigenpairs.

2.2 Lanczos in Finite Precision Arithmetic

When implemented in finite precision arithmetic, the Lanczos algorithm does not behave as
expected. The eigenvalues of the tridiagonal matrix Tj (the Ritz values) converge very rapidly
to well-separated eigenvalues of matrix A, typically those in the extreme of the spectrum.
However, if enough iterations of the algorithm are carried out, then multiple copies of these
Ritz values appear, beyond the multiplicity of the corresponding eigenvalue in A. In addition,
the process gives wrong Ritz values as converged, which are usually called spurious eigenvalues.
It can be easily seen that this unwanted behaviour appears at the same time that the Lanczos
vectors start to lose mutual orthogonality. Lanczos was already aware of this problem and
suggested to explicitly reorthogonalize the new Lanczos vector with respect to all the previous
ones at each step. Although effective, this costly operation seems to invalidate all the appealing
properties of the algorithm. Other alternatives, discussed below, have been proposed in order
to be able to deal with loss of orthogonality at less cost.

Full Orthogonalization. The simplest cure for loss of orthogonality is to orthogonalize vec-
tor uj+1 explicitly with respect to all the previously computed Lanczos vectors. That is, as
shown in Algorithm 2, performing the computation for all vectors, including the first j− 2 ones
for which the Fourier coefficient is zero in exact arithmetic.

The main advantage of full orthogonalization is its robustness, since orthogonality is main-
tained to full machine accuracy. (Note that for this to be true it may be necessary to resort
to double orthogonalization, see report STR-1 for details.) Two drawbacks of this technique
are that all Lanczos vectors need to be kept in main memory (not in secondary storage as
some legacy implementations did) and that the cost of orthogonalization is high and increases
as more Lanczos steps are carried out. These reasons call for a restarted version, in which
the number of Lanczos vectors is bounded, see section 2.3. Another drawback appears when
doing a parallel implementation of the method, in which case performance would be bad if a
modified Gram-Schmidt variant is employed for the orthogonalization (again, see report STR-1
for details).
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Local Orthogonalization. The quest for more efficient solutions to the problem of loss of
orthogonality started with a better theoretical understanding of the Lanczos process in finite
precision arithmetic, unveiled by Paige’s work [1972; 1976; 1980]. One key aspect of Paige’s
analysis is that Lanczos vectors start to lose orthogonality as soon as an eigenvalue of Tj
stabilizes or, in other words, when a Ritz value is close to convergence, causing the subsequent
Lanczos vectors to contain a non-negligible component in the direction of the corresponding
Ritz vector. A remarkable aspect of the analysis is that, until this situation occurs, the Lanczos
algorithm with local orthogonalization (that is, if vector uj+1 is orthogonalized only with respect
to vj and vj−1) computes the same quantities as the variant with full orthogonalization. This
fact suggests different strategies for avoiding loss of orthogonality:

• To proceed with local orthogonalization until an eigenvalue of Tj has stabilized, then start
a new Lanczos process with a different initial vector. This strategy was pointed out by
Paige, but without specifying practical ways of doing this automatically.

• To proceed with local orthogonalization until an eigenvalue of Tj has stabilized, then
continue the Lanczos process with the introduction of some kind of reorthogonalization.
This gave way to the development of semiorthogonal Lanczos methods, discussed below.

A completely different approach is to simply ignore loss of orthogonality and perform only
local orthogonalization at every Lanczos step. This technique is obviously the cheapest one, but
has several important drawbacks. For one thing, convergence of new Ritz values is much slower
since multiple copies of already converged ones keep on appearing again and again. This makes
it necessary to carry out many Lanczos steps to obtain the desired eigenvalues, in some cases n
steps or even many more depending on the number of wanted eigenvalues, where n is the order
of matrix A. On the other hand, there is the problem of determining the correct multiplicity
of the computed eigenvalues as well as discarding those which are spurious. A clever technique
for doing this was proposed by Cullum and Willoughby [1985]. An eigenvalue of Tj is identified
as being spurious if it is also an eigenvalue of the matrix T ′j , which is constructed by deleting
the first row and column of Tj . Furthermore, good eigenvalues are accepted only after they
have been replicated at least once. Finally, another disadvantage of this method is that, if
eigenvectors are also required, then they have to be computed afterwards with techniques such
as the inverse iteration, since the Lanczos vectors are not available.

Although the above technique may seem less powerful than more elaborate alternatives, in
some applications it may still be competitive, see for instance [Elsner et al., 1999].

Semiorthogonal Techniques. As mentioned above, the idea of these techniques is to pro-
ceed with local orthogonalization until an eigenvalue of Tj has stabilized, then continue the
Lanczos process with the introduction of some kind of reorthogonalization. Two aspects are
basic in this context:

1. How to carry out the orthogonalization so that the overall cost is less than in the full
orthogonalization variant.
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2. How to determine when an eigenvalue has stabilized or, alternatively, how to monitor loss
of orthogonality, without incurring a high cost.

With respect to the first aspect, several different approaches have been proposed: selective
[Parlett and Scott, 1979], periodic [Grcar, 1981], and partial [Simon, 1984b] reorthogonalization.
In brief, they consist, respectively, in the following:

• (selective) orthogonalize every Lanczos vectors with respect to all nearly converged Ritz
vectors;

• (periodic) orthogonalize uj+1 and uj+2 with respect to all the Lanczos vectors; and

• (partial) orthogonalize uj+1 and uj+2 with respect to a subset of the Lanczos vectors.

The second aspect can be addressed in several ways. One of them is to compute the error
bounds associated to the Ritz pairs at each Lanczos step. This operation is quite costly because
all the eigenvectors of Tj have to be computed from scratch every time. Methods have been
proposed for cheaply updating the eigenvalues of Tj in order to detect their stabilization, [Parlett
and Reid, 1981; Parlett and Nour-Omid, 1985]. Another alternative is to use a recurrence for
estimating a bound of the level of orthogonality. If we define the level of orthogonality at the
j-th Lanczos step as

ωj ≡ max
1≤k<j

|ωj,k| , with ωj,k ≡ v∗j vk , (7)

then the full reorthogonalization technique keeps it at roundoff level in each step, ωj ≈ ε. How-
ever, all that effort is not necessary since, as shown in [Simon, 1984b,a], maintaining semiorthog-
onality, i.e. ωj ≈

√
ε, is sufficient so that properties of the Rayleigh-Ritz projection are still valid.

Among the different proposed recurrences, the most appropriate seems to be the following
one used in [Simon, 1984b] to estimate the values of ωj,k for k = 1, 2, . . . , j:

ωk,k = 1 , (8)

ωk,k−1 = ψk , with ωk,0 ≡ 0 , (9)

ωj+1,k =
1

βj+1
[βk+1ωj,k+1 + (αk − αj)ωj,k + βkωj,k−1 − βjωj−1,k] + ϑj,k , (10)

where ψk and ϑj,k represent roundoff errors.

2.3 Explicit Restart

As mentioned above, restarting is intended for reducing the storage requirements and, more
importantly, reducing the computational cost of orthogonalization, which grows as more Lanczos
vectors become available.

Restart can be accomplished in several ways. The idea of explicit restart is to iteratively
compute differentm-step Lanczos factorizations (Eq. 4) with successively“better”initial vectors.
The initial vector for the next Lanczos run is computed from the information available in the
most recent factorization. The simplest way to select the new initial vector is to take the Ritz
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vector associated to the first wanted, non-converged Ritz value. This strategy is described below
whereas more sophisticated approaches are postponed until next subsection.

In order for a restarted method to be effective in computing more than one eigenpair, it is
necessary to keep track of already converged eigenpairs and perform some form of deflation.
This is done by a technique usually called locking, in which vectors associated to converged
eigenvalues are not modified in successive runs. Suppose that after certain Lanczos run, the
first k eigenpairs have already converged to the desired accuracy, and write Vm as

Vm =
[
V

(l)
1:k V

(a)
k+1:m

]
, (11)

where the (l) superscript indicates locked vectors and the (a) superscript indicates active vectors.
In the next Lanczos run, only m−k Lanczos vectors must be computed, the active ones, and in
doing this the first k vectors have to be deflated. This can be done simply by orthogonalizing
every new Lanczos vector also with respect to the locked ones, as illustrated in Algorithm 3.

Algorithm 3 (Lanczos with Deflation)

Input: Matrix A, number of steps m, Vk, Tk with k < m, and initial vector vk+1 of norm 1
Output: (Vm, Tm, vm+1, βm+1) so that AVm − VmTm = βm+1vm+1e

∗
m

For j = k + 1, . . . ,m
uj+1 = Avj
Orthogonalize uj+1 with respect to Vj (obtaining αj)
βj+1 = ‖uj+1‖2
If βj+1 = 0, stop
vj+1 = uj+1/βj+1

end

Note that Algorithm 3 only computes the last m − k columns of Vm and Tm, the active
part of the factorization. Note also that the initial vector is vk+1 in this case. The operations
carried out in the loop are essentially the same as in Algorithm 2, with the difference that the
orthogonalization has to include necessarily the locked Lanczos vectors (deflation).

Algorithm 4 (Explicitly Restarted Lanczos)

Input: Matrix A, initial vector v1, and dimension of the subspace m
Output: A partial eigendecomposition AVk = VkΘk, with Θk = diag(θ1, . . . , θk)

Normalize v1
Initialize Vm = [v1], k = 0
Restart loop

Perform m− k steps of Lanczos with deflation (Algorithm 3)
Compute eigenpairs of Tm, Tmyi = yiθi
Compute residual norm estimates, τi = βm+1|e∗myi|
Lock converged eigenpairs, update the value of k
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Vm = VmY
end

Note that in Algorithm 4 the leading submatrix of T corresponding to locked vectors is
diagonal and therefore some of the operations can be skipped for this part.

Loss of Orthogonality in the Context of Restarted Lanczos. In a restarted Lanczos
method, it is also necessary to deal with loss of orthogonality. In the particular case of the
simple explicit restart scheme (Algorithm 4), it is safe to use any of the techniques described in
section 2, since full orthogonality of the Lanczos vectors is not required for the restart to work
correctly. Only in the case of local orthogonalization, the following considerations should be
made:

• Since the value of m (the largest allowable subspace dimension) is usually very small
compared to n (the matrix dimension), then the heuristics suggested by Cullum and
Willoughby [1985] cannot be applied. Therefore, another technique should be used in order
to discard spurious eigenvalues as well as redundant duplicates. One possible approach
is to explicitly compute the residual norm for every converged eigenpair, then from the
correct values accept only the first replica (this is explained in more detail in section 3).

• The restart vector has to be explicitly orthogonalized with respect to the locked vectors.

2.4 Other Strategies for Restart

As in the case of the Arnoldi method, the simple restart scheme discussed above is very limited,
especially when more than one eigenpair is sought. The problem is that the vector chosen to be
the initial vector in the next restart does not represent well the whole currently approximated
invariant subspace. Better than this is to employ a filtering strategy that incorporates directions
of all wanted eigenvectors while trying to eliminate directions in the unwanted ones. This is
discussed more in detail in slepc Technical Report STR-4, “Arnoldi Methods in slepc”. Here,
we mention some of the techniques proposed for the particular case of symmetric Lanczos.

Polynomial filtering. In contrast to non-symmetric problems, polynomial filtering (i.e. to
take the initial vector to be vk+1 = z/‖z‖2 where z = p(A)z0, being p a polynomial of degree
d and z0 a linear combination of the approximate eigenvectors) in symmetric problems can
be more effective because building optimal Chebyshev polynomials is rather straightforward.
However, this technique is generally more expensive than the alternatives mentioned below.

Implicit restart. Implicit restart consists in combining the Lanczos process with the implic-
itly shifted QR algorithm. An m-step Lanczos factorization is compacted into an (m−d)-step
Lanczos factorization, which is then extended again to an m-step one. In this process, the rele-
vant eigeninformation from the large factorization is kept in the small factorization. In the case
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of symmetric problems, it is possible to select the accelerating polynomial by using different
values of the shifts in the QR process, for example Leja points. It can be shown that Leja shifts
can lead to faster convergence of implicitly restarted Lanczos [Calvetti et al., 1994; Baglama
et al., 1996].

Thick restart. Implicit restart may have stability problems unless its implementation incor-
porates some rather sophisticated numerical techniques. It can be shown that, in the case of
symmetric problems, there is a mathematically equivalent yet simpler way to achieve the same
effect. The method is called thick-restart Lanczos [Wu and Simon, 2000]. Instead of restarting
with a set of modified Lanczos vectors, thick restart works directly with Ritz vectors, resulting
in a much simpler implementation.

Krylov-Schur. The Krylov-Schur method [Stewart, 2001a] employs a restarting technique
that is very similar to the thick restart idea. The advantage is that it provides a general
restarting framework that can be applied also in the non-symmetric case. Since this method is
also implemented in slepc, its description is provided separately (see slepc Technical Report
STR-7, “Krylov-Schur Methods in slepc”).

2.5 Other Variants

This subsection describes very briefly some variations of the algorithm that may be of interest
in some situations.

B -Lanczos. When addressing a generalized eigenvalue problem, Ax = λBx, symmetry is
lost because the algorithm has to work with matrix TS = B−1A or similar expressions such as
TSI = (A− σB)−1B in the case of the shift-and-invert spectral transformation.

However, in the case of symmetric positive-definite matrix pairs, symmetry can be recovered
by replacing the standard Hermitian inner product, 〈x, y〉 = y∗x, by the B-inner product,
〈x, y〉B = y∗B x. It can be shown that the operator matrix (TS or TSI) is self-adjoint with
respect to this inner product. When the Lanczos method is applied to the operator TS (similarly
for TSI), the relations shown in section 2 can be rewritten as

AVm −BVmTm = βm+1Bvm+1e
∗
m, (12)

and
V ∗mAVm = Tm, (13)

assuming that, in this case, the Lanczos vectors are not orthonormal but B-orthonormal, i.e.
V ∗mBVm = Im. Finally, the residual norms satisfy

‖Axi − λiBxi‖B−1 = βm+1|e∗myi|. (14)

In the context of Algorithm 3, this can be accomplished by doing B-orthogonalization and
replacing the 2-norm with the B-norm, ‖w‖B =

√
〈w,w〉B . This modified algorithm is usually

referred to as B-Lanczos. For details, see [Bai et al., 2000, §5.5] or [van der Vorst, 1982].
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In the context of the B-Lanczos process, the techniques for maintaining semi-orthogonality
described in subsection 2.2 can still be applied, see [Parlett, 1992].

In the particular case that B is singular, special care must be taken in order to prevent
eigenvector corruption. This can be avoided with a simple technique called purification, see
[Nour-Omid et al., 1987].

Block Methods. A block Krylov method tries to extract approximate spectral information
from a block Krylov subspace

Km(A, V1) = span{V1, AV1, A2V1, . . . , A
m−1V1} , (15)

where V1 has b columns. This kind of method has two main advantages. First, the convergence
behavior can be less problematic in cases with multiple or clustered eigenvalues, provided that b
is sufficiently large. Second, computational efficiency may be better in some situations, because
access to the elements of matrix A is amortized by multiplying several vectors and not just one.

Many variants of block Lanczos methods have been proposed, starting from a straightforward
block generalization of the simple algorithm with full orthogonalization [Golub and Underwood,
1977], incorporating some semi-orthogonality technique [Grimes et al., 1994], or even with
implicit restart [Baglama et al., 2003]. The main issue with block Lanczos algorithms is how to
deflate single vectors within a block. This can be simplified significantly with a different class
of variants called band Lanczos [Bai and Freund, 2001].

2.6 Available Implementations

Many implementations of Lanczos are freely available in the form of subroutine libraries. A
complete list can be found in slepc Technical Report STR-6, “A Survey of Software for Sparse
Eigenvalue Problems”, with references and pointers to software download. Of particular interest
are those libraries with parallel capabilities, such as arpack, blzpack, and trlan. All these
have been integrated in slepc by means of a wrapper. A short description of these packages
can be found in the slepc Users Manual, together with an indication of how to use them from
slepc.

3 The slepc Implementation

A symmetric Lanczos solver is available in slepc since version 2.3.0. This implementation is
based on Algorithm 4 and incorporates all the different alternatives for dealing with loss of
orthogonality presented in subsection 2.2. Also, the B-Lanczos process mentioned in section
2.5 is also incorporated through the general slepc framework for spectral transformations, see
the slepc Users Manual for details.
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3.1 The Algorithm

The particular implementation of Lanczos provided by slepc is sketched in Algorithm 5. The
differences with respect to Algorithm 4 are highlighted with (*).

Algorithm 5 (Explicitly Restarted Lanczos with Different Orthogonalizations)

Input: Matrix A, initial vector v1, and dimension of the subspace m
Output: A partial eigendecomposition AVk = VkΘk, with Θk = diag(θ1, . . . , θk)

Normalize v1
Initialize Vm = [v1], k = 0
Restart loop

For j = k + 1, . . . ,m
uj+1 = Avj
(*) Orthogonalize uj+1 with respect to [Vk, vj−1, vj ] (obtaining αj)
(*) Determine a set S of Lanczos vectors
(*) Orthogonalize uj+1 with respect to S
βj+1 = ‖uj+1‖2 (if βj+1 = 0, stop)
vj+1 = uj+1/βj+1

end
Compute eigenpairs of Tm, Tmyi = yiθi
Compute residual norm estimates, τi = βm+1|e∗myi|
(*) Check for spurious eigenvalues
Lock converged eigenpairs, update the value of k
Vm = VmY

end

The determination of S differs depending on the orthogonalization strategy (local, full, selec-
tive, periodic or partial) selected by the user (subsection 3.2 explains how to do the selection).

• In local orthogonalization, S = ∅ so the second orthogonalization is not carried out.

• Full orthogonalization is equivalent to S = [vk+1, vk+2, . . . , vj−2]. In the context of parallel
execution the two orthogonalizations shown in Algorithm 5 are actually performed as a
single operation.

• In the case of periodic and partial orthogonalization, the recurrence for estimating ωj

defined in subsection 2.2 is computed at every Lanczos step. Note that the cost of this
computation is negligible.

• In selective orthogonalization, the slepc implementation explicitly computes the eigenval-
ues and eigenvectors of the tridiagonal matrix Tk, together with the associated residual
norm estimates, at every Lanczos step. Note that this can be computationally rather
expensive for moderately large k.
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The check for spurious eigenvalues shown at the end of Algorithm 5 is required only in the
case of local orthogonalization. The strategy is the following. Eigenvalues that are repeated
in the tridiagonal matrix Tm of the current restart are simply discarded, assuming that if they
are genuine repetitions they will arise in the subsequent restart. For the rest of eigenvalues,
the associated true residual norm ‖Axi − λixi‖2 is explicitly computed to guarantee that only
those eigenpairs whose norm is within the tolerance are accepted.

For a comprehensive comparison of the different orthogonalization strategies implemented
in slepc, both in terms of performance and numerical robustness, the reader is referred to
Hernandez et al. [2007].

3.2 User Options

The only option specific to the Lanczos solver that the user can set is the orthogonalization
strategy. The following function allows the programmer to change the selection from the source
code of the application:

EPSLanczosSetReorthog(EPS eps,EPSLanczosReorthogType reorthog)

where the reorthog argument is an enumerate that can adopt values indicating the different
orthogonalization techniques. The corresponding command-line key is -eps_lanczos_orthog

with one of the following values: local, full, selective, periodic, partial, and delayed.
The last one is similar to full but with delayed reorthogonalization activated (for details see
slepc Technical Report STR-1, “Orthogonalization Routines in slepc”).

The default value is local since it is usually the fastest variant and generally gives good
numerical results. In order to maximize the numerical robustness, full should be used.

3.3 Known Issues and Applicability

The Lanczos solver in slepc is currently only implemented in its symmetric variant and therefore
cannot be applied to non-symmetric problems. A non-symmetric Lanczos algorithm could be
implemented in the future.

Supported problem types EPS_HEP, EPS_GHEP

Allowed portion of the spectrum All

Support for complex numbers Yes
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