Actual source code: fnexp.c

slepc-3.22.2 2024-12-02
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    Exponential function  exp(x)
 12: */

 14: #include <slepc/private/fnimpl.h>
 15: #include <slepcblaslapack.h>

 17: static PetscErrorCode FNEvaluateFunction_Exp(FN fn,PetscScalar x,PetscScalar *y)
 18: {
 19:   PetscFunctionBegin;
 20:   *y = PetscExpScalar(x);
 21:   PetscFunctionReturn(PETSC_SUCCESS);
 22: }

 24: static PetscErrorCode FNEvaluateDerivative_Exp(FN fn,PetscScalar x,PetscScalar *y)
 25: {
 26:   PetscFunctionBegin;
 27:   *y = PetscExpScalar(x);
 28:   PetscFunctionReturn(PETSC_SUCCESS);
 29: }

 31: #define MAX_PADE 6

 33: static PetscErrorCode FNEvaluateFunctionMat_Exp_Pade(FN fn,Mat A,Mat B)
 34: {
 35:   PetscBLASInt      n=0,ld,ld2,*ipiv,info,inc=1;
 36:   PetscInt          m,j,k,sexp;
 37:   PetscBool         odd;
 38:   const PetscInt    p=MAX_PADE;
 39:   PetscReal         c[MAX_PADE+1],s,*rwork;
 40:   PetscScalar       scale,mone=-1.0,one=1.0,two=2.0,zero=0.0;
 41:   PetscScalar       *Ba,*As,*A2,*Q,*P,*W,*aux;
 42:   const PetscScalar *Aa;

 44:   PetscFunctionBegin;
 45:   PetscCall(MatDenseGetArrayRead(A,&Aa));
 46:   PetscCall(MatDenseGetArray(B,&Ba));
 47:   PetscCall(MatGetSize(A,&m,NULL));
 48:   PetscCall(PetscBLASIntCast(m,&n));
 49:   ld  = n;
 50:   ld2 = ld*ld;
 51:   P   = Ba;
 52:   PetscCall(PetscMalloc6(m*m,&Q,m*m,&W,m*m,&As,m*m,&A2,ld,&rwork,ld,&ipiv));
 53:   PetscCall(PetscArraycpy(As,Aa,ld2));

 55:   /* Pade' coefficients */
 56:   c[0] = 1.0;
 57:   for (k=1;k<=p;k++) c[k] = c[k-1]*(p+1-k)/(k*(2*p+1-k));

 59:   /* Scaling */
 60:   s = LAPACKlange_("I",&n,&n,As,&ld,rwork);
 61:   PetscCall(PetscLogFlops(1.0*n*n));
 62:   if (s>0.5) {
 63:     sexp = PetscMax(0,(int)(PetscLogReal(s)/PetscLogReal(2.0))+2);
 64:     scale = PetscPowRealInt(2.0,-sexp);
 65:     PetscCallBLAS("BLASscal",BLASscal_(&ld2,&scale,As,&inc));
 66:     PetscCall(PetscLogFlops(1.0*n*n));
 67:   } else sexp = 0;

 69:   /* Horner evaluation */
 70:   PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n,&n,&n,&one,As,&ld,As,&ld,&zero,A2,&ld));
 71:   PetscCall(PetscLogFlops(2.0*n*n*n));
 72:   PetscCall(PetscArrayzero(Q,ld2));
 73:   PetscCall(PetscArrayzero(P,ld2));
 74:   for (j=0;j<n;j++) {
 75:     Q[j+j*ld] = c[p];
 76:     P[j+j*ld] = c[p-1];
 77:   }

 79:   odd = PETSC_TRUE;
 80:   for (k=p-1;k>0;k--) {
 81:     if (odd) {
 82:       PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n,&n,&n,&one,Q,&ld,A2,&ld,&zero,W,&ld));
 83:       SlepcSwap(Q,W,aux);
 84:       for (j=0;j<n;j++) Q[j+j*ld] += c[k-1];
 85:       odd = PETSC_FALSE;
 86:     } else {
 87:       PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n,&n,&n,&one,P,&ld,A2,&ld,&zero,W,&ld));
 88:       SlepcSwap(P,W,aux);
 89:       for (j=0;j<n;j++) P[j+j*ld] += c[k-1];
 90:       odd = PETSC_TRUE;
 91:     }
 92:     PetscCall(PetscLogFlops(2.0*n*n*n));
 93:   }
 94:   /*if (odd) {
 95:     PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n,&n,&n,&one,Q,&ld,As,&ld,&zero,W,&ld));
 96:     SlepcSwap(Q,W,aux);
 97:     PetscCallBLAS("BLASaxpy",BLASaxpy_(&ld2,&mone,P,&inc,Q,&inc));
 98:     PetscCallBLAS("LAPACKgesv",LAPACKgesv_(&n,&n,Q,&ld,ipiv,P,&ld,&info));
 99:     SlepcCheckLapackInfo("gesv",info);
100:     PetscCallBLAS("BLASscal",BLASscal_(&ld2,&two,P,&inc));
101:     for (j=0;j<n;j++) P[j+j*ld] += 1.0;
102:     PetscCallBLAS("BLASscal",BLASscal_(&ld2,&mone,P,&inc));
103:   } else {*/
104:     PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n,&n,&n,&one,P,&ld,As,&ld,&zero,W,&ld));
105:     SlepcSwap(P,W,aux);
106:     PetscCallBLAS("BLASaxpy",BLASaxpy_(&ld2,&mone,P,&inc,Q,&inc));
107:     PetscCallBLAS("LAPACKgesv",LAPACKgesv_(&n,&n,Q,&ld,ipiv,P,&ld,&info));
108:     SlepcCheckLapackInfo("gesv",info);
109:     PetscCallBLAS("BLASscal",BLASscal_(&ld2,&two,P,&inc));
110:     for (j=0;j<n;j++) P[j+j*ld] += 1.0;
111:   /*}*/
112:   PetscCall(PetscLogFlops(2.0*n*n*n+2.0*n*n*n/3.0+4.0*n*n));

114:   for (k=1;k<=sexp;k++) {
115:     PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n,&n,&n,&one,P,&ld,P,&ld,&zero,W,&ld));
116:     PetscCall(PetscArraycpy(P,W,ld2));
117:   }
118:   if (P!=Ba) PetscCall(PetscArraycpy(Ba,P,ld2));
119:   PetscCall(PetscLogFlops(2.0*n*n*n*sexp));

121:   PetscCall(PetscFree6(Q,W,As,A2,rwork,ipiv));
122:   PetscCall(MatDenseRestoreArrayRead(A,&Aa));
123:   PetscCall(MatDenseRestoreArray(B,&Ba));
124:   PetscFunctionReturn(PETSC_SUCCESS);
125: }

127: #if defined(PETSC_HAVE_COMPLEX)
128: /*
129:  * Set scaling factor (s) and Pade degree (k,m)
130:  */
131: static PetscErrorCode sexpm_params(PetscReal nrm,PetscInt *s,PetscInt *k,PetscInt *m)
132: {
133:   PetscFunctionBegin;
134:   if (nrm>1) {
135:     if      (nrm<200)  {*s = 4; *k = 5; *m = *k-1;}
136:     else if (nrm<1e4)  {*s = 4; *k = 4; *m = *k+1;}
137:     else if (nrm<1e6)  {*s = 4; *k = 3; *m = *k+1;}
138:     else if (nrm<1e9)  {*s = 3; *k = 3; *m = *k+1;}
139:     else if (nrm<1e11) {*s = 2; *k = 3; *m = *k+1;}
140:     else if (nrm<1e12) {*s = 2; *k = 2; *m = *k+1;}
141:     else if (nrm<1e14) {*s = 2; *k = 1; *m = *k+1;}
142:     else               {*s = 1; *k = 1; *m = *k+1;}
143:   } else { /* nrm<1 */
144:     if       (nrm>0.5)  {*s = 4; *k = 4; *m = *k-1;}
145:     else  if (nrm>0.3)  {*s = 3; *k = 4; *m = *k-1;}
146:     else  if (nrm>0.15) {*s = 2; *k = 4; *m = *k-1;}
147:     else  if (nrm>0.07) {*s = 1; *k = 4; *m = *k-1;}
148:     else  if (nrm>0.01) {*s = 0; *k = 4; *m = *k-1;}
149:     else  if (nrm>3e-4) {*s = 0; *k = 3; *m = *k-1;}
150:     else  if (nrm>1e-5) {*s = 0; *k = 3; *m = 0;}
151:     else  if (nrm>1e-8) {*s = 0; *k = 2; *m = 0;}
152:     else                {*s = 0; *k = 1; *m = 0;}
153:   }
154:   PetscFunctionReturn(PETSC_SUCCESS);
155: }

157: /*
158:  * Partial fraction form coefficients.
159:  * If query, the function returns the size necessary to store the coefficients.
160:  */
161: static PetscErrorCode getcoeffs(PetscInt k,PetscInt m,PetscComplex *r,PetscComplex *q,PetscComplex *remain,PetscBool query)
162: {
163:   PetscInt i;
164:   const PetscComplex /* m == k+1 */
165:     p1r4[5] = {-1.582680186458572e+01 - 2.412564578224361e+01*PETSC_i,
166:                -1.582680186458572e+01 + 2.412564578224361e+01*PETSC_i,
167:                 1.499984465975511e+02 + 6.804227952202417e+01*PETSC_i,
168:                 1.499984465975511e+02 - 6.804227952202417e+01*PETSC_i,
169:                -2.733432894659307e+02                                },
170:     p1q4[5] = { 3.655694325463550e+00 + 6.543736899360086e+00*PETSC_i,
171:                 3.655694325463550e+00 - 6.543736899360086e+00*PETSC_i,
172:                 5.700953298671832e+00 + 3.210265600308496e+00*PETSC_i,
173:                 5.700953298671832e+00 - 3.210265600308496e+00*PETSC_i,
174:                 6.286704751729261e+00                               },
175:     p1r3[4] = {-1.130153999597152e+01 + 1.247167585025031e+01*PETSC_i,
176:                -1.130153999597152e+01 - 1.247167585025031e+01*PETSC_i,
177:                 1.330153999597152e+01 - 6.007173273704750e+01*PETSC_i,
178:                 1.330153999597152e+01 + 6.007173273704750e+01*PETSC_i},
179:     p1q3[4] = { 3.212806896871536e+00 + 4.773087433276636e+00*PETSC_i,
180:                 3.212806896871536e+00 - 4.773087433276636e+00*PETSC_i,
181:                 4.787193103128464e+00 + 1.567476416895212e+00*PETSC_i,
182:                 4.787193103128464e+00 - 1.567476416895212e+00*PETSC_i},
183:     p1r2[3] = { 7.648749087422928e+00 + 4.171640244747463e+00*PETSC_i,
184:                 7.648749087422928e+00 - 4.171640244747463e+00*PETSC_i,
185:                -1.829749817484586e+01                                },
186:     p1q2[3] = { 2.681082873627756e+00 + 3.050430199247411e+00*PETSC_i,
187:                 2.681082873627756e+00 - 3.050430199247411e+00*PETSC_i,
188:                 3.637834252744491e+00                                },
189:     p1r1[2] = { 1.000000000000000e+00 - 3.535533905932738e+00*PETSC_i,
190:                 1.000000000000000e+00 + 3.535533905932738e+00*PETSC_i},
191:     p1q1[2] = { 2.000000000000000e+00 + 1.414213562373095e+00*PETSC_i,
192:                 2.000000000000000e+00 - 1.414213562373095e+00*PETSC_i};
193:   const PetscComplex /* m == k-1 */
194:     m1r5[4] = {-1.423367961376821e+02 - 1.385465094833037e+01*PETSC_i,
195:                -1.423367961376821e+02 + 1.385465094833037e+01*PETSC_i,
196:                 2.647367961376822e+02 - 4.814394493714596e+02*PETSC_i,
197:                 2.647367961376822e+02 + 4.814394493714596e+02*PETSC_i},
198:     m1q5[4] = { 5.203941240131764e+00 + 5.805856841805367e+00*PETSC_i,
199:                 5.203941240131764e+00 - 5.805856841805367e+00*PETSC_i,
200:                 6.796058759868242e+00 + 1.886649260140217e+00*PETSC_i,
201:                 6.796058759868242e+00 - 1.886649260140217e+00*PETSC_i},
202:     m1r4[3] = { 2.484269593165883e+01 + 7.460342395992306e+01*PETSC_i,
203:                 2.484269593165883e+01 - 7.460342395992306e+01*PETSC_i,
204:                -1.734353918633177e+02                                },
205:     m1q4[3] = { 4.675757014491557e+00 + 3.913489560603711e+00*PETSC_i,
206:                 4.675757014491557e+00 - 3.913489560603711e+00*PETSC_i,
207:                 5.648485971016893e+00                                },
208:     m1r3[2] = { 2.533333333333333e+01 - 2.733333333333333e+01*PETSC_i,
209:                 2.533333333333333e+01 + 2.733333333333333e+01*PETSC_i},
210:     m1q3[2] = { 4.000000000000000e+00 + 2.000000000000000e+00*PETSC_i,
211:                 4.000000000000000e+00 - 2.000000000000000e+00*PETSC_i};
212:   const PetscScalar /* m == k-1 */
213:     m1remain5[2] = { 2.000000000000000e-01,  9.800000000000000e+00},
214:     m1remain4[2] = {-2.500000000000000e-01, -7.750000000000000e+00},
215:     m1remain3[2] = { 3.333333333333333e-01,  5.666666666666667e+00},
216:     m1remain2[2] = {-0.5,                   -3.5},
217:     remain3[4] = {1.0/6.0, 1.0/2.0, 1, 1},
218:     remain2[3] = {1.0/2.0, 1, 1};

220:   PetscFunctionBegin;
221:   if (query) { /* query about buffer's size */
222:     if (m==k+1) {
223:       *remain = 0;
224:       *r = *q = k+1;
225:       PetscFunctionReturn(PETSC_SUCCESS); /* quick return */
226:     }
227:     if (m==k-1) {
228:       *remain = 2;
229:       if (k==5) *r = *q = 4;
230:       else if (k==4) *r = *q = 3;
231:       else if (k==3) *r = *q = 2;
232:       else if (k==2) *r = *q = 1;
233:     }
234:     if (m==0) {
235:       *r = *q = 0;
236:       *remain = k+1;
237:     }
238:   } else {
239:     if (m==k+1) {
240:       if (k==4) {
241:         for (i=0;i<5;i++) { r[i] = p1r4[i]; q[i] = p1q4[i]; }
242:       } else if (k==3) {
243:         for (i=0;i<4;i++) { r[i] = p1r3[i]; q[i] = p1q3[i]; }
244:       } else if (k==2) {
245:         for (i=0;i<3;i++) { r[i] = p1r2[i]; q[i] = p1q2[i]; }
246:       } else if (k==1) {
247:         for (i=0;i<2;i++) { r[i] = p1r1[i]; q[i] = p1q1[i]; }
248:       }
249:       PetscFunctionReturn(PETSC_SUCCESS); /* quick return */
250:     }
251:     if (m==k-1) {
252:       if (k==5) {
253:         for (i=0;i<4;i++) { r[i] = m1r5[i]; q[i] = m1q5[i]; }
254:         for (i=0;i<2;i++) remain[i] = m1remain5[i];
255:       } else if (k==4) {
256:         for (i=0;i<3;i++) { r[i] = m1r4[i]; q[i] = m1q4[i]; }
257:         for (i=0;i<2;i++) remain[i] = m1remain4[i];
258:       } else if (k==3) {
259:         for (i=0;i<2;i++) { r[i] = m1r3[i]; q[i] = m1q3[i]; remain[i] = m1remain3[i]; }
260:       } else if (k==2) {
261:         r[0] = -13.5; q[0] = 3;
262:         for (i=0;i<2;i++) remain[i] = m1remain2[i];
263:       }
264:     }
265:     if (m==0) {
266:       r = q = NULL;
267:       if (k==3) {
268:         for (i=0;i<4;i++) remain[i] = remain3[i];
269:       } else if (k==2) {
270:         for (i=0;i<3;i++) remain[i] = remain2[i];
271:       }
272:     }
273:   }
274:   PetscFunctionReturn(PETSC_SUCCESS);
275: }

277: /*
278:  * Product form coefficients.
279:  * If query, the function returns the size necessary to store the coefficients.
280:  */
281: static PetscErrorCode getcoeffsproduct(PetscInt k,PetscInt m,PetscComplex *p,PetscComplex *q,PetscComplex *mult,PetscBool query)
282: {
283:   PetscInt i;
284:   const PetscComplex /* m == k+1 */
285:   p1p4[4] = {-5.203941240131764e+00 + 5.805856841805367e+00*PETSC_i,
286:              -5.203941240131764e+00 - 5.805856841805367e+00*PETSC_i,
287:              -6.796058759868242e+00 + 1.886649260140217e+00*PETSC_i,
288:              -6.796058759868242e+00 - 1.886649260140217e+00*PETSC_i},
289:   p1q4[5] = { 3.655694325463550e+00 + 6.543736899360086e+00*PETSC_i,
290:               3.655694325463550e+00 - 6.543736899360086e+00*PETSC_i,
291:               6.286704751729261e+00                                ,
292:               5.700953298671832e+00 + 3.210265600308496e+00*PETSC_i,
293:               5.700953298671832e+00 - 3.210265600308496e+00*PETSC_i},
294:   p1p3[3] = {-4.675757014491557e+00 + 3.913489560603711e+00*PETSC_i,
295:              -4.675757014491557e+00 - 3.913489560603711e+00*PETSC_i,
296:              -5.648485971016893e+00                                },
297:   p1q3[4] = { 3.212806896871536e+00 + 4.773087433276636e+00*PETSC_i,
298:               3.212806896871536e+00 - 4.773087433276636e+00*PETSC_i,
299:               4.787193103128464e+00 + 1.567476416895212e+00*PETSC_i,
300:               4.787193103128464e+00 - 1.567476416895212e+00*PETSC_i},
301:   p1p2[2] = {-4.00000000000000e+00  + 2.000000000000000e+00*PETSC_i,
302:              -4.00000000000000e+00  - 2.000000000000000e+00*PETSC_i},
303:   p1q2[3] = { 2.681082873627756e+00 + 3.050430199247411e+00*PETSC_i,
304:               2.681082873627756e+00 - 3.050430199247411e+00*PETSC_i,
305:               3.637834252744491e+00                               },
306:   p1q1[2] = { 2.000000000000000e+00 + 1.414213562373095e+00*PETSC_i,
307:               2.000000000000000e+00 - 1.414213562373095e+00*PETSC_i};
308:   const PetscComplex /* m == k-1 */
309:   m1p5[5] = {-3.655694325463550e+00 + 6.543736899360086e+00*PETSC_i,
310:              -3.655694325463550e+00 - 6.543736899360086e+00*PETSC_i,
311:              -6.286704751729261e+00                                ,
312:              -5.700953298671832e+00 + 3.210265600308496e+00*PETSC_i,
313:              -5.700953298671832e+00 - 3.210265600308496e+00*PETSC_i},
314:   m1q5[4] = { 5.203941240131764e+00 + 5.805856841805367e+00*PETSC_i,
315:               5.203941240131764e+00 - 5.805856841805367e+00*PETSC_i,
316:               6.796058759868242e+00 + 1.886649260140217e+00*PETSC_i,
317:               6.796058759868242e+00 - 1.886649260140217e+00*PETSC_i},
318:   m1p4[4] = {-3.212806896871536e+00 + 4.773087433276636e+00*PETSC_i,
319:              -3.212806896871536e+00 - 4.773087433276636e+00*PETSC_i,
320:              -4.787193103128464e+00 + 1.567476416895212e+00*PETSC_i,
321:              -4.787193103128464e+00 - 1.567476416895212e+00*PETSC_i},
322:   m1q4[3] = { 4.675757014491557e+00 + 3.913489560603711e+00*PETSC_i,
323:               4.675757014491557e+00 - 3.913489560603711e+00*PETSC_i,
324:               5.648485971016893e+00                                },
325:   m1p3[3] = {-2.681082873627756e+00 + 3.050430199247411e+00*PETSC_i,
326:              -2.681082873627756e+00 - 3.050430199247411e+00*PETSC_i,
327:              -3.637834252744491e+00                                },
328:   m1q3[2] = { 4.000000000000000e+00 + 2.000000000000000e+00*PETSC_i,
329:               4.000000000000000e+00 - 2.000000000000001e+00*PETSC_i},
330:   m1p2[2] = {-2.000000000000000e+00 + 1.414213562373095e+00*PETSC_i,
331:              -2.000000000000000e+00 - 1.414213562373095e+00*PETSC_i};

333:   PetscFunctionBegin;
334:   if (query) {
335:     if (m == k+1) {
336:       *mult = 1;
337:       *p = k;
338:       *q = k+1;
339:       PetscFunctionReturn(PETSC_SUCCESS);
340:     }
341:     if (m==k-1) {
342:       *mult = 1;
343:       *p = k;
344:       *q = k-1;
345:     }
346:   } else {
347:     if (m == k+1) {
348:       *mult = PetscPowInt(-1,m);
349:       *mult *= m;
350:       if (k==4) {
351:         for (i=0;i<4;i++) { p[i] = p1p4[i]; q[i] = p1q4[i]; }
352:         q[4] = p1q4[4];
353:       } else if (k==3) {
354:         for (i=0;i<3;i++) { p[i] = p1p3[i]; q[i] = p1q3[i]; }
355:         q[3] = p1q3[3];
356:       } else if (k==2) {
357:         for (i=0;i<2;i++) { p[i] = p1p2[i]; q[i] = p1q2[i]; }
358:         q[2] = p1q2[2];
359:       } else if (k==1) {
360:         p[0] = -3;
361:         for (i=0;i<2;i++) q[i] = p1q1[i];
362:       }
363:       PetscFunctionReturn(PETSC_SUCCESS);
364:     }
365:     if (m==k-1) {
366:       *mult = PetscPowInt(-1,m);
367:       *mult /= k;
368:       if (k==5) {
369:         for (i=0;i<4;i++) { p[i] = m1p5[i]; q[i] = m1q5[i]; }
370:         p[4] = m1p5[4];
371:       } else if (k==4) {
372:         for (i=0;i<3;i++) { p[i] = m1p4[i]; q[i] = m1q4[i]; }
373:         p[3] = m1p4[3];
374:       } else if (k==3) {
375:         for (i=0;i<2;i++) { p[i] = m1p3[i]; q[i] = m1q3[i]; }
376:         p[2] = m1p3[2];
377:       } else if (k==2) {
378:         for (i=0;i<2;i++) p[i] = m1p2[i];
379:         q[0] = 3;
380:       }
381:     }
382:   }
383:   PetscFunctionReturn(PETSC_SUCCESS);
384: }
385: #endif /* PETSC_HAVE_COMPLEX */

387: #if defined(PETSC_USE_COMPLEX)
388: static PetscErrorCode getisreal(PetscInt n,PetscComplex *a,PetscBool *result)
389: {
390:   PetscInt i;

392:   PetscFunctionBegin;
393:   *result=PETSC_TRUE;
394:   for (i=0;i<n&&*result;i++) {
395:     if (PetscImaginaryPartComplex(a[i])) *result=PETSC_FALSE;
396:   }
397:   PetscFunctionReturn(PETSC_SUCCESS);
398: }
399: #endif

401: /*
402:  * Matrix exponential implementation based on algorithm and matlab code by Stefan Guettel
403:  * and Yuji Nakatsukasa
404:  *
405:  *     Stefan Guettel and Yuji Nakatsukasa, "Scaled and Squared Subdiagonal Pade
406:  *     Approximation for the Matrix Exponential",
407:  *     SIAM J. Matrix Anal. Appl. 37(1):145-170, 2016.
408:  *     https://doi.org/10.1137/15M1027553
409:  */
410: static PetscErrorCode FNEvaluateFunctionMat_Exp_GuettelNakatsukasa(FN fn,Mat A,Mat B)
411: {
412: #if !defined(PETSC_HAVE_COMPLEX)
413:   PetscFunctionBegin;
414:   SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"This function requires C99 or C++ complex support");
415: #else
416:   PetscInt          i,j,n_,s,k,m,mod;
417:   PetscBLASInt      n=0,n2=0,irsize=0,rsizediv2,ipsize=0,iremainsize=0,info,*piv,minlen,lwork=0,one=1;
418:   PetscReal         nrm,shift=0.0;
419: #if defined(PETSC_USE_COMPLEX)
420:   PetscReal         *rwork=NULL;
421: #endif
422:   PetscComplex      *As,*RR,*RR2,*expmA,*expmA2,*Maux,*Maux2,rsize,*r,psize,*p,remainsize,*remainterm,*rootp,*rootq,mult=0.0,scale,cone=1.0,czero=0.0,*aux;
423:   PetscScalar       *Ba,*Ba2,*sMaux,*wr,*wi,expshift,sone=1.0,szero=0.0,*saux;
424:   const PetscScalar *Aa;
425:   PetscBool         isreal,flg;
426:   PetscBLASInt      query=-1;
427:   PetscScalar       work1,*work;

429:   PetscFunctionBegin;
430:   PetscCall(MatGetSize(A,&n_,NULL));
431:   PetscCall(PetscBLASIntCast(n_,&n));
432:   PetscCall(MatDenseGetArrayRead(A,&Aa));
433:   PetscCall(MatDenseGetArray(B,&Ba));
434:   Ba2 = Ba;
435:   PetscCall(PetscBLASIntCast(n*n,&n2));

437:   PetscCall(PetscMalloc2(n2,&sMaux,n2,&Maux));
438:   Maux2 = Maux;
439:   PetscCall(PetscOptionsGetReal(NULL,NULL,"-fn_expm_estimated_eig",&shift,&flg));
440:   if (!flg) {
441:     PetscCall(PetscMalloc2(n,&wr,n,&wi));
442:     PetscCall(PetscArraycpy(sMaux,Aa,n2));
443:     /* estimate rightmost eigenvalue and shift A with it */
444: #if !defined(PETSC_USE_COMPLEX)
445:     PetscCallBLAS("LAPACKgeev",LAPACKgeev_("N","N",&n,sMaux,&n,wr,wi,NULL,&n,NULL,&n,&work1,&query,&info));
446:     SlepcCheckLapackInfo("geev",info);
447:     PetscCall(PetscBLASIntCast((PetscInt)work1,&lwork));
448:     PetscCall(PetscMalloc1(lwork,&work));
449:     PetscCallBLAS("LAPACKgeev",LAPACKgeev_("N","N",&n,sMaux,&n,wr,wi,NULL,&n,NULL,&n,work,&lwork,&info));
450:     PetscCall(PetscFree(work));
451: #else
452:     PetscCall(PetscArraycpy(Maux,Aa,n2));
453:     PetscCallBLAS("LAPACKgeev",LAPACKgeev_("N","N",&n,Maux,&n,wr,NULL,&n,NULL,&n,&work1,&query,rwork,&info));
454:     SlepcCheckLapackInfo("geev",info);
455:     PetscCall(PetscBLASIntCast((PetscInt)PetscRealPart(work1),&lwork));
456:     PetscCall(PetscMalloc2(2*n,&rwork,lwork,&work));
457:     PetscCallBLAS("LAPACKgeev",LAPACKgeev_("N","N",&n,Maux,&n,wr,NULL,&n,NULL,&n,work,&lwork,rwork,&info));
458:     PetscCall(PetscFree2(rwork,work));
459: #endif
460:     SlepcCheckLapackInfo("geev",info);
461:     PetscCall(PetscLogFlops(25.0*n*n*n+(n*n*n)/3.0+1.0*n*n*n));

463:     shift = PetscRealPart(wr[0]);
464:     for (i=1;i<n;i++) {
465:       if (PetscRealPart(wr[i]) > shift) shift = PetscRealPart(wr[i]);
466:     }
467:     PetscCall(PetscFree2(wr,wi));
468:   }
469:   /* shift so that largest real part is (about) 0 */
470:   PetscCall(PetscArraycpy(sMaux,Aa,n2));
471:   if (shift) {
472:     for (i=0;i<n;i++) sMaux[i+i*n] -= shift;
473:     PetscCall(PetscLogFlops(1.0*n));
474:   }
475: #if defined(PETSC_USE_COMPLEX)
476:   PetscCall(PetscArraycpy(Maux,Aa,n2));
477:   if (shift) {
478:     for (i=0;i<n;i++) Maux[i+i*n] -= shift;
479:     PetscCall(PetscLogFlops(1.0*n));
480:   }
481: #endif

483:   /* estimate norm(A) and select the scaling factor */
484:   nrm = LAPACKlange_("O",&n,&n,sMaux,&n,NULL);
485:   PetscCall(PetscLogFlops(1.0*n*n));
486:   PetscCall(sexpm_params(nrm,&s,&k,&m));
487:   if (s==0 && k==1 && m==0) { /* exp(A) = I+A to eps! */
488:     if (shift) expshift = PetscExpReal(shift);
489:     for (i=0;i<n;i++) sMaux[i+i*n] += 1.0;
490:     if (shift) {
491:       PetscCallBLAS("BLASscal",BLASscal_(&n2,&expshift,sMaux,&one));
492:       PetscCall(PetscLogFlops(1.0*(n+n2)));
493:     } else PetscCall(PetscLogFlops(1.0*n));
494:     PetscCall(PetscArraycpy(Ba,sMaux,n2));
495:     PetscCall(PetscFree2(sMaux,Maux));
496:     PetscCall(MatDenseRestoreArrayRead(A,&Aa));
497:     PetscCall(MatDenseRestoreArray(B,&Ba));
498:     PetscFunctionReturn(PETSC_SUCCESS); /* quick return */
499:   }

501:   PetscCall(PetscMalloc4(n2,&expmA,n2,&As,n2,&RR,n,&piv));
502:   expmA2 = expmA; RR2 = RR;
503:   /* scale matrix */
504: #if !defined(PETSC_USE_COMPLEX)
505:   for (i=0;i<n2;i++) {
506:     As[i] = sMaux[i];
507:   }
508: #else
509:   PetscCall(PetscArraycpy(As,sMaux,n2));
510: #endif
511:   scale = 1.0/PetscPowRealInt(2.0,s);
512:   PetscCallBLAS("BLASCOMPLEXscal",BLASCOMPLEXscal_(&n2,&scale,As,&one));
513:   PetscCall(SlepcLogFlopsComplex(1.0*n2));

515:   /* evaluate Pade approximant (partial fraction or product form) */
516:   if (fn->method==3 || !m) { /* partial fraction */
517:     PetscCall(getcoeffs(k,m,&rsize,&psize,&remainsize,PETSC_TRUE));
518:     PetscCall(PetscBLASIntCast((PetscInt)PetscRealPartComplex(rsize),&irsize));
519:     PetscCall(PetscBLASIntCast((PetscInt)PetscRealPartComplex(psize),&ipsize));
520:     PetscCall(PetscBLASIntCast((PetscInt)PetscRealPartComplex(remainsize),&iremainsize));
521:     PetscCall(PetscMalloc3(irsize,&r,ipsize,&p,iremainsize,&remainterm));
522:     PetscCall(getcoeffs(k,m,r,p,remainterm,PETSC_FALSE));

524:     PetscCall(PetscArrayzero(expmA,n2));
525: #if !defined(PETSC_USE_COMPLEX)
526:     isreal = PETSC_TRUE;
527: #else
528:     PetscCall(getisreal(n2,Maux,&isreal));
529: #endif
530:     if (isreal) {
531:       rsizediv2 = irsize/2;
532:       for (i=0;i<rsizediv2;i++) { /* use partial fraction to get R(As) */
533:         PetscCall(PetscArraycpy(Maux,As,n2));
534:         PetscCall(PetscArrayzero(RR,n2));
535:         for (j=0;j<n;j++) {
536:           Maux[j+j*n] -= p[2*i];
537:           RR[j+j*n] = r[2*i];
538:         }
539:         PetscCallBLAS("LAPACKCOMPLEXgesv",LAPACKCOMPLEXgesv_(&n,&n,Maux,&n,piv,RR,&n,&info));
540:         SlepcCheckLapackInfo("gesv",info);
541:         for (j=0;j<n2;j++) {
542:           expmA[j] += RR[j] + PetscConj(RR[j]);
543:         }
544:         /* loop(n) + gesv + loop(n2) */
545:         PetscCall(SlepcLogFlopsComplex(1.0*n+(2.0*n*n*n/3.0+2.0*n*n*n)+2.0*n2));
546:       }

548:       mod = ipsize % 2;
549:       if (mod) {
550:         PetscCall(PetscArraycpy(Maux,As,n2));
551:         PetscCall(PetscArrayzero(RR,n2));
552:         for (j=0;j<n;j++) {
553:           Maux[j+j*n] -= p[ipsize-1];
554:           RR[j+j*n] = r[irsize-1];
555:         }
556:         PetscCallBLAS("LAPACKCOMPLEXgesv",LAPACKCOMPLEXgesv_(&n,&n,Maux,&n,piv,RR,&n,&info));
557:         SlepcCheckLapackInfo("gesv",info);
558:         for (j=0;j<n2;j++) {
559:           expmA[j] += RR[j];
560:         }
561:         PetscCall(SlepcLogFlopsComplex(1.0*n+(2.0*n*n*n/3.0+2.0*n*n*n)+1.0*n2));
562:       }
563:     } else { /* complex */
564:       for (i=0;i<irsize;i++) { /* use partial fraction to get R(As) */
565:         PetscCall(PetscArraycpy(Maux,As,n2));
566:         PetscCall(PetscArrayzero(RR,n2));
567:         for (j=0;j<n;j++) {
568:           Maux[j+j*n] -= p[i];
569:           RR[j+j*n] = r[i];
570:         }
571:         PetscCallBLAS("LAPACKCOMPLEXgesv",LAPACKCOMPLEXgesv_(&n,&n,Maux,&n,piv,RR,&n,&info));
572:         SlepcCheckLapackInfo("gesv",info);
573:         for (j=0;j<n2;j++) {
574:           expmA[j] += RR[j];
575:         }
576:         PetscCall(SlepcLogFlopsComplex(1.0*n+(2.0*n*n*n/3.0+2.0*n*n*n)+1.0*n2));
577:       }
578:     }
579:     for (i=0;i<iremainsize;i++) {
580:       if (!i) {
581:         PetscCall(PetscArrayzero(RR,n2));
582:         for (j=0;j<n;j++) {
583:           RR[j+j*n] = remainterm[iremainsize-1];
584:         }
585:       } else {
586:         PetscCall(PetscArraycpy(RR,As,n2));
587:         for (j=1;j<i;j++) {
588:           PetscCallBLAS("BLASCOMPLEXgemm",BLASCOMPLEXgemm_("N","N",&n,&n,&n,&cone,RR,&n,RR,&n,&czero,Maux,&n));
589:           SlepcSwap(RR,Maux,aux);
590:           PetscCall(SlepcLogFlopsComplex(2.0*n*n*n));
591:         }
592:         PetscCallBLAS("BLASCOMPLEXscal",BLASCOMPLEXscal_(&n2,&remainterm[iremainsize-1-i],RR,&one));
593:         PetscCall(SlepcLogFlopsComplex(1.0*n2));
594:       }
595:       for (j=0;j<n2;j++) {
596:         expmA[j] += RR[j];
597:       }
598:       PetscCall(SlepcLogFlopsComplex(1.0*n2));
599:     }
600:     PetscCall(PetscFree3(r,p,remainterm));
601:   } else { /* product form, default */
602:     PetscCall(getcoeffsproduct(k,m,&rsize,&psize,&mult,PETSC_TRUE));
603:     PetscCall(PetscBLASIntCast((PetscInt)PetscRealPartComplex(rsize),&irsize));
604:     PetscCall(PetscBLASIntCast((PetscInt)PetscRealPartComplex(psize),&ipsize));
605:     PetscCall(PetscMalloc2(irsize,&rootp,ipsize,&rootq));
606:     PetscCall(getcoeffsproduct(k,m,rootp,rootq,&mult,PETSC_FALSE));

608:     PetscCall(PetscArrayzero(expmA,n2));
609:     for (i=0;i<n;i++) { /* initialize */
610:       expmA[i+i*n] = 1.0;
611:     }
612:     minlen = PetscMin(irsize,ipsize);
613:     for (i=0;i<minlen;i++) {
614:       PetscCall(PetscArraycpy(RR,As,n2));
615:       for (j=0;j<n;j++) {
616:         RR[j+j*n] -= rootp[i];
617:       }
618:       PetscCallBLAS("BLASCOMPLEXgemm",BLASCOMPLEXgemm_("N","N",&n,&n,&n,&cone,RR,&n,expmA,&n,&czero,Maux,&n));
619:       SlepcSwap(expmA,Maux,aux);
620:       PetscCall(PetscArraycpy(RR,As,n2));
621:       for (j=0;j<n;j++) {
622:         RR[j+j*n] -= rootq[i];
623:       }
624:       PetscCallBLAS("LAPACKCOMPLEXgesv",LAPACKCOMPLEXgesv_(&n,&n,RR,&n,piv,expmA,&n,&info));
625:       SlepcCheckLapackInfo("gesv",info);
626:       /* loop(n) + gemm + loop(n) + gesv */
627:       PetscCall(SlepcLogFlopsComplex(1.0*n+(2.0*n*n*n)+1.0*n+(2.0*n*n*n/3.0+2.0*n*n*n)));
628:     }
629:     /* extra numerator */
630:     for (i=minlen;i<irsize;i++) {
631:       PetscCall(PetscArraycpy(RR,As,n2));
632:       for (j=0;j<n;j++) {
633:         RR[j+j*n] -= rootp[i];
634:       }
635:       PetscCallBLAS("BLASCOMPLEXgemm",BLASCOMPLEXgemm_("N","N",&n,&n,&n,&cone,RR,&n,expmA,&n,&czero,Maux,&n));
636:       SlepcSwap(expmA,Maux,aux);
637:       PetscCall(SlepcLogFlopsComplex(1.0*n+2.0*n*n*n));
638:     }
639:     /* extra denominator */
640:     for (i=minlen;i<ipsize;i++) {
641:       PetscCall(PetscArraycpy(RR,As,n2));
642:       for (j=0;j<n;j++) RR[j+j*n] -= rootq[i];
643:       PetscCallBLAS("LAPACKCOMPLEXgesv",LAPACKCOMPLEXgesv_(&n,&n,RR,&n,piv,expmA,&n,&info));
644:       SlepcCheckLapackInfo("gesv",info);
645:       PetscCall(SlepcLogFlopsComplex(1.0*n+(2.0*n*n*n/3.0+2.0*n*n*n)));
646:     }
647:     PetscCallBLAS("BLASCOMPLEXscal",BLASCOMPLEXscal_(&n2,&mult,expmA,&one));
648:     PetscCall(SlepcLogFlopsComplex(1.0*n2));
649:     PetscCall(PetscFree2(rootp,rootq));
650:   }

652: #if !defined(PETSC_USE_COMPLEX)
653:   for (i=0;i<n2;i++) {
654:     Ba2[i] = PetscRealPartComplex(expmA[i]);
655:   }
656: #else
657:   PetscCall(PetscArraycpy(Ba2,expmA,n2));
658: #endif

660:   /* perform repeated squaring */
661:   for (i=0;i<s;i++) { /* final squaring */
662:     PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n,&n,&n,&sone,Ba2,&n,Ba2,&n,&szero,sMaux,&n));
663:     SlepcSwap(Ba2,sMaux,saux);
664:     PetscCall(PetscLogFlops(2.0*n*n*n));
665:   }
666:   if (Ba2!=Ba) {
667:     PetscCall(PetscArraycpy(Ba,Ba2,n2));
668:     sMaux = Ba2;
669:   }
670:   if (shift) {
671:     expshift = PetscExpReal(shift);
672:     PetscCallBLAS("BLASscal",BLASscal_(&n2,&expshift,Ba,&one));
673:     PetscCall(PetscLogFlops(1.0*n2));
674:   }

676:   /* restore pointers */
677:   Maux = Maux2; expmA = expmA2; RR = RR2;
678:   PetscCall(PetscFree2(sMaux,Maux));
679:   PetscCall(PetscFree4(expmA,As,RR,piv));
680:   PetscCall(MatDenseRestoreArrayRead(A,&Aa));
681:   PetscCall(MatDenseRestoreArray(B,&Ba));
682:   PetscFunctionReturn(PETSC_SUCCESS);
683: #endif
684: }

686: #define SMALLN 100

688: /*
689:  * Function needed to compute optimal parameters (required workspace is 3*n*n)
690:  */
691: static PetscInt ell(PetscBLASInt n,PetscScalar *A,PetscReal coeff,PetscInt m,PetscScalar *work,PetscRandom rand)
692: {
693:   PetscScalar    *Ascaled=work;
694:   PetscReal      nrm,alpha,beta,rwork[1];
695:   PetscInt       t;
696:   PetscBLASInt   i,j;

698:   PetscFunctionBegin;
699:   beta = PetscPowReal(coeff,1.0/(2*m+1));
700:   for (i=0;i<n;i++)
701:     for (j=0;j<n;j++)
702:       Ascaled[i+j*n] = beta*PetscAbsScalar(A[i+j*n]);
703:   nrm = LAPACKlange_("O",&n,&n,A,&n,rwork);
704:   PetscCall(PetscLogFlops(2.0*n*n));
705:   PetscCall(SlepcNormAm(n,Ascaled,2*m+1,work+n*n,rand,&alpha));
706:   alpha /= nrm;
707:   t = PetscMax((PetscInt)PetscCeilReal(PetscLogReal(2.0*alpha/PETSC_MACHINE_EPSILON)/PetscLogReal(2.0)/(2*m)),0);
708:   PetscFunctionReturn(t);
709: }

711: /*
712:  * Compute scaling parameter (s) and order of Pade approximant (m)  (required workspace is 4*n*n)
713:  */
714: static PetscErrorCode expm_params(PetscInt n,PetscScalar **Apowers,PetscInt *s,PetscInt *m,PetscScalar *work)
715: {
716:   PetscScalar     sfactor,sone=1.0,szero=0.0,*A=Apowers[0],*Ascaled;
717:   PetscReal       d4,d6,d8,d10,eta1,eta3,eta4,eta5,rwork[1];
718:   PetscBLASInt    n_=0,n2,one=1;
719:   PetscRandom     rand;
720:   const PetscReal coeff[5] = { 9.92063492063492e-06, 9.94131285136576e-11,  /* backward error function */
721:                                2.22819456055356e-16, 1.69079293431187e-22, 8.82996160201868e-36 };
722:   const PetscReal theta[5] = { 1.495585217958292e-002,    /* m = 3  */
723:                                2.539398330063230e-001,    /* m = 5  */
724:                                9.504178996162932e-001,    /* m = 7  */
725:                                2.097847961257068e+000,    /* m = 9  */
726:                                5.371920351148152e+000 };  /* m = 13 */

728:   PetscFunctionBegin;
729:   *s = 0;
730:   *m = 13;
731:   PetscCall(PetscBLASIntCast(n,&n_));
732:   PetscCall(PetscRandomCreate(PETSC_COMM_SELF,&rand));
733:   d4 = PetscPowReal(LAPACKlange_("O",&n_,&n_,Apowers[2],&n_,rwork),1.0/4.0);
734:   if (d4==0.0) { /* safeguard for the case A = 0 */
735:     *m = 3;
736:     goto done;
737:   }
738:   d6 = PetscPowReal(LAPACKlange_("O",&n_,&n_,Apowers[3],&n_,rwork),1.0/6.0);
739:   PetscCall(PetscLogFlops(2.0*n*n));
740:   eta1 = PetscMax(d4,d6);
741:   if (eta1<=theta[0] && !ell(n_,A,coeff[0],3,work,rand)) {
742:     *m = 3;
743:     goto done;
744:   }
745:   if (eta1<=theta[1] && !ell(n_,A,coeff[1],5,work,rand)) {
746:     *m = 5;
747:     goto done;
748:   }
749:   if (n<SMALLN) {
750:     PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&n_,&n_,&sone,Apowers[2],&n_,Apowers[2],&n_,&szero,work,&n_));
751:     d8 = PetscPowReal(LAPACKlange_("O",&n_,&n_,work,&n_,rwork),1.0/8.0);
752:     PetscCall(PetscLogFlops(2.0*n*n*n+1.0*n*n));
753:   } else {
754:     PetscCall(SlepcNormAm(n_,Apowers[2],2,work,rand,&d8));
755:     d8 = PetscPowReal(d8,1.0/8.0);
756:   }
757:   eta3 = PetscMax(d6,d8);
758:   if (eta3<=theta[2] && !ell(n_,A,coeff[2],7,work,rand)) {
759:     *m = 7;
760:     goto done;
761:   }
762:   if (eta3<=theta[3] && !ell(n_,A,coeff[3],9,work,rand)) {
763:     *m = 9;
764:     goto done;
765:   }
766:   if (n<SMALLN) {
767:     PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&n_,&n_,&sone,Apowers[2],&n_,Apowers[3],&n_,&szero,work,&n_));
768:     d10 = PetscPowReal(LAPACKlange_("O",&n_,&n_,work,&n_,rwork),1.0/10.0);
769:     PetscCall(PetscLogFlops(2.0*n*n*n+1.0*n*n));
770:   } else {
771:     PetscCall(SlepcNormAm(n_,Apowers[1],5,work,rand,&d10));
772:     d10 = PetscPowReal(d10,1.0/10.0);
773:   }
774:   eta4 = PetscMax(d8,d10);
775:   eta5 = PetscMin(eta3,eta4);
776:   *s = PetscMax((PetscInt)PetscCeilReal(PetscLogReal(eta5/theta[4])/PetscLogReal(2.0)),0);
777:   if (*s) {
778:     Ascaled = work+3*n*n;
779:     n2 = n_*n_;
780:     PetscCallBLAS("BLAScopy",BLAScopy_(&n2,A,&one,Ascaled,&one));
781:     sfactor = PetscPowRealInt(2.0,-(*s));
782:     PetscCallBLAS("BLASscal",BLASscal_(&n2,&sfactor,Ascaled,&one));
783:     PetscCall(PetscLogFlops(1.0*n*n));
784:   } else Ascaled = A;
785:   *s += ell(n_,Ascaled,coeff[4],13,work,rand);
786: done:
787:   PetscCall(PetscRandomDestroy(&rand));
788:   PetscFunctionReturn(PETSC_SUCCESS);
789: }

791: /*
792:  * Matrix exponential implementation based on algorithm and matlab code by N. Higham and co-authors
793:  *
794:  *     N. J. Higham, "The scaling and squaring method for the matrix exponential
795:  *     revisited", SIAM J. Matrix Anal. Appl. 26(4):1179-1193, 2005.
796:  */
797: PetscErrorCode FNEvaluateFunctionMat_Exp_Higham(FN fn,Mat A,Mat B)
798: {
799:   PetscBLASInt      n_=0,n2,*ipiv,info,one=1;
800:   PetscInt          n,m,j,s;
801:   PetscScalar       scale,smone=-1.0,sone=1.0,stwo=2.0,szero=0.0;
802:   PetscScalar       *Ba,*Apowers[5],*Q,*P,*W,*work,*aux;
803:   const PetscScalar *Aa,*c;
804:   const PetscScalar c3[4]   = { 120, 60, 12, 1 };
805:   const PetscScalar c5[6]   = { 30240, 15120, 3360, 420, 30, 1 };
806:   const PetscScalar c7[8]   = { 17297280, 8648640, 1995840, 277200, 25200, 1512, 56, 1 };
807:   const PetscScalar c9[10]  = { 17643225600.0, 8821612800.0, 2075673600, 302702400, 30270240,
808:                                 2162160, 110880, 3960, 90, 1 };
809:   const PetscScalar c13[14] = { 64764752532480000.0, 32382376266240000.0, 7771770303897600.0,
810:                                 1187353796428800.0,  129060195264000.0,   10559470521600.0,
811:                                 670442572800.0,      33522128640.0,       1323241920.0,
812:                                 40840800,          960960,            16380,  182,  1 };

814:   PetscFunctionBegin;
815:   PetscCall(MatDenseGetArrayRead(A,&Aa));
816:   PetscCall(MatDenseGetArray(B,&Ba));
817:   PetscCall(MatGetSize(A,&n,NULL));
818:   PetscCall(PetscBLASIntCast(n,&n_));
819:   n2 = n_*n_;
820:   PetscCall(PetscMalloc2(8*n*n,&work,n,&ipiv));

822:   /* Matrix powers */
823:   Apowers[0] = work;                  /* Apowers[0] = A   */
824:   Apowers[1] = Apowers[0] + n*n;      /* Apowers[1] = A^2 */
825:   Apowers[2] = Apowers[1] + n*n;      /* Apowers[2] = A^4 */
826:   Apowers[3] = Apowers[2] + n*n;      /* Apowers[3] = A^6 */
827:   Apowers[4] = Apowers[3] + n*n;      /* Apowers[4] = A^8 */

829:   PetscCall(PetscArraycpy(Apowers[0],Aa,n2));
830:   PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&n_,&n_,&sone,Apowers[0],&n_,Apowers[0],&n_,&szero,Apowers[1],&n_));
831:   PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&n_,&n_,&sone,Apowers[1],&n_,Apowers[1],&n_,&szero,Apowers[2],&n_));
832:   PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&n_,&n_,&sone,Apowers[1],&n_,Apowers[2],&n_,&szero,Apowers[3],&n_));
833:   PetscCall(PetscLogFlops(6.0*n*n*n));

835:   /* Compute scaling parameter and order of Pade approximant */
836:   PetscCall(expm_params(n,Apowers,&s,&m,Apowers[4]));

838:   if (s) { /* rescale */
839:     for (j=0;j<4;j++) {
840:       scale = PetscPowRealInt(2.0,-PetscMax(2*j,1)*s);
841:       PetscCallBLAS("BLASscal",BLASscal_(&n2,&scale,Apowers[j],&one));
842:     }
843:     PetscCall(PetscLogFlops(4.0*n*n));
844:   }

846:   /* Evaluate the Pade approximant */
847:   switch (m) {
848:     case 3:  c = c3;  break;
849:     case 5:  c = c5;  break;
850:     case 7:  c = c7;  break;
851:     case 9:  c = c9;  break;
852:     case 13: c = c13; break;
853:     default: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Wrong value of m %" PetscInt_FMT,m);
854:   }
855:   P = Ba;
856:   Q = Apowers[4] + n*n;
857:   W = Q + n*n;
858:   switch (m) {
859:     case 3:
860:     case 5:
861:     case 7:
862:     case 9:
863:       if (m==9) PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&n_,&n_,&sone,Apowers[1],&n_,Apowers[3],&n_,&szero,Apowers[4],&n_));
864:       PetscCall(PetscArrayzero(P,n2));
865:       PetscCall(PetscArrayzero(Q,n2));
866:       for (j=0;j<n;j++) {
867:         P[j+j*n] = c[1];
868:         Q[j+j*n] = c[0];
869:       }
870:       for (j=m;j>=3;j-=2) {
871:         PetscCallBLAS("BLASaxpy",BLASaxpy_(&n2,&c[j],Apowers[(j+1)/2-1],&one,P,&one));
872:         PetscCallBLAS("BLASaxpy",BLASaxpy_(&n2,&c[j-1],Apowers[(j+1)/2-1],&one,Q,&one));
873:         PetscCall(PetscLogFlops(4.0*n*n));
874:       }
875:       PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&n_,&n_,&sone,Apowers[0],&n_,P,&n_,&szero,W,&n_));
876:       PetscCall(PetscLogFlops(2.0*n*n*n));
877:       SlepcSwap(P,W,aux);
878:       break;
879:     case 13:
880:       /*  P = A*(Apowers[3]*(c[13]*Apowers[3] + c[11]*Apowers[2] + c[9]*Apowers[1])
881:               + c[7]*Apowers[3] + c[5]*Apowers[2] + c[3]*Apowers[1] + c[1]*I)       */
882:       PetscCallBLAS("BLAScopy",BLAScopy_(&n2,Apowers[3],&one,P,&one));
883:       PetscCallBLAS("BLASscal",BLASscal_(&n2,&c[13],P,&one));
884:       PetscCallBLAS("BLASaxpy",BLASaxpy_(&n2,&c[11],Apowers[2],&one,P,&one));
885:       PetscCallBLAS("BLASaxpy",BLASaxpy_(&n2,&c[9],Apowers[1],&one,P,&one));
886:       PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&n_,&n_,&sone,Apowers[3],&n_,P,&n_,&szero,W,&n_));
887:       PetscCall(PetscLogFlops(5.0*n*n+2.0*n*n*n));
888:       PetscCall(PetscArrayzero(P,n2));
889:       for (j=0;j<n;j++) P[j+j*n] = c[1];
890:       PetscCallBLAS("BLASaxpy",BLASaxpy_(&n2,&c[7],Apowers[3],&one,P,&one));
891:       PetscCallBLAS("BLASaxpy",BLASaxpy_(&n2,&c[5],Apowers[2],&one,P,&one));
892:       PetscCallBLAS("BLASaxpy",BLASaxpy_(&n2,&c[3],Apowers[1],&one,P,&one));
893:       PetscCallBLAS("BLASaxpy",BLASaxpy_(&n2,&sone,P,&one,W,&one));
894:       PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&n_,&n_,&sone,Apowers[0],&n_,W,&n_,&szero,P,&n_));
895:       PetscCall(PetscLogFlops(7.0*n*n+2.0*n*n*n));
896:       /*  Q = Apowers[3]*(c[12]*Apowers[3] + c[10]*Apowers[2] + c[8]*Apowers[1])
897:               + c[6]*Apowers[3] + c[4]*Apowers[2] + c[2]*Apowers[1] + c[0]*I        */
898:       PetscCallBLAS("BLAScopy",BLAScopy_(&n2,Apowers[3],&one,Q,&one));
899:       PetscCallBLAS("BLASscal",BLASscal_(&n2,&c[12],Q,&one));
900:       PetscCallBLAS("BLASaxpy",BLASaxpy_(&n2,&c[10],Apowers[2],&one,Q,&one));
901:       PetscCallBLAS("BLASaxpy",BLASaxpy_(&n2,&c[8],Apowers[1],&one,Q,&one));
902:       PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&n_,&n_,&sone,Apowers[3],&n_,Q,&n_,&szero,W,&n_));
903:       PetscCall(PetscLogFlops(5.0*n*n+2.0*n*n*n));
904:       PetscCall(PetscArrayzero(Q,n2));
905:       for (j=0;j<n;j++) Q[j+j*n] = c[0];
906:       PetscCallBLAS("BLASaxpy",BLASaxpy_(&n2,&c[6],Apowers[3],&one,Q,&one));
907:       PetscCallBLAS("BLASaxpy",BLASaxpy_(&n2,&c[4],Apowers[2],&one,Q,&one));
908:       PetscCallBLAS("BLASaxpy",BLASaxpy_(&n2,&c[2],Apowers[1],&one,Q,&one));
909:       PetscCallBLAS("BLASaxpy",BLASaxpy_(&n2,&sone,W,&one,Q,&one));
910:       PetscCall(PetscLogFlops(7.0*n*n));
911:       break;
912:     default: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Wrong value of m %" PetscInt_FMT,m);
913:   }
914:   PetscCallBLAS("BLASaxpy",BLASaxpy_(&n2,&smone,P,&one,Q,&one));
915:   PetscCallBLAS("LAPACKgesv",LAPACKgesv_(&n_,&n_,Q,&n_,ipiv,P,&n_,&info));
916:   SlepcCheckLapackInfo("gesv",info);
917:   PetscCallBLAS("BLASscal",BLASscal_(&n2,&stwo,P,&one));
918:   for (j=0;j<n;j++) P[j+j*n] += 1.0;
919:   PetscCall(PetscLogFlops(2.0*n*n*n/3.0+4.0*n*n));

921:   /* Squaring */
922:   for (j=1;j<=s;j++) {
923:     PetscCallBLAS("BLASgemm",BLASgemm_("N","N",&n_,&n_,&n_,&sone,P,&n_,P,&n_,&szero,W,&n_));
924:     SlepcSwap(P,W,aux);
925:   }
926:   if (P!=Ba) PetscCall(PetscArraycpy(Ba,P,n2));
927:   PetscCall(PetscLogFlops(2.0*n*n*n*s));

929:   PetscCall(PetscFree2(work,ipiv));
930:   PetscCall(MatDenseRestoreArrayRead(A,&Aa));
931:   PetscCall(MatDenseRestoreArray(B,&Ba));
932:   PetscFunctionReturn(PETSC_SUCCESS);
933: }

935: #if defined(PETSC_HAVE_CUDA)
936: #include "../src/sys/classes/fn/impls/cuda/fnutilcuda.h"
937: #include <slepccupmblas.h>

939: PetscErrorCode FNEvaluateFunctionMat_Exp_Pade_CUDA(FN fn,Mat A,Mat B)
940: {
941:   PetscBLASInt      n=0,ld,ld2,*d_ipiv,*d_info,info,one=1;
942:   PetscInt          m,k,sexp;
943:   PetscBool         odd;
944:   const PetscInt    p=MAX_PADE;
945:   PetscReal         c[MAX_PADE+1],s;
946:   PetscScalar       scale,smone=-1.0,sone=1.0,stwo=2.0,szero=0.0;
947:   const PetscScalar *Aa;
948:   PetscScalar       *d_Ba,*d_As,*d_A2,*d_Q,*d_P,*d_W,*aux,**ppP,**d_ppP,**ppQ,**d_ppQ;
949:   cublasHandle_t    cublasv2handle;

951:   PetscFunctionBegin;
952:   PetscCall(PetscDeviceInitialize(PETSC_DEVICE_CUDA)); /* For CUDA event timers */
953:   PetscCall(PetscCUBLASGetHandle(&cublasv2handle));
954:   PetscCall(MatGetSize(A,&m,NULL));
955:   PetscCall(PetscBLASIntCast(m,&n));
956:   ld  = n;
957:   ld2 = ld*ld;
958:   if (A==B) {
959:     PetscCallCUDA(cudaMalloc((void **)&d_As,sizeof(PetscScalar)*m*m));
960:     PetscCall(MatDenseCUDAGetArrayRead(A,&Aa));
961:     PetscCallCUDA(cudaMemcpy(d_As,Aa,sizeof(PetscScalar)*ld2,cudaMemcpyDeviceToDevice));
962:     PetscCall(MatDenseCUDARestoreArrayRead(A,&Aa));
963:   } else PetscCall(MatDenseCUDAGetArrayRead(A,(const PetscScalar**)&d_As));
964:   PetscCall(MatDenseCUDAGetArrayWrite(B,&d_Ba));

966:   PetscCallCUDA(cudaMalloc((void **)&d_Q,sizeof(PetscScalar)*m*m));
967:   PetscCallCUDA(cudaMalloc((void **)&d_W,sizeof(PetscScalar)*m*m));
968:   PetscCallCUDA(cudaMalloc((void **)&d_A2,sizeof(PetscScalar)*m*m));
969:   PetscCallCUDA(cudaMalloc((void **)&d_ipiv,sizeof(PetscBLASInt)*ld));
970:   PetscCallCUDA(cudaMalloc((void **)&d_info,sizeof(PetscBLASInt)));
971:   PetscCallCUDA(cudaMalloc((void **)&d_ppP,sizeof(PetscScalar*)));
972:   PetscCallCUDA(cudaMalloc((void **)&d_ppQ,sizeof(PetscScalar*)));

974:   PetscCall(PetscMalloc1(1,&ppP));
975:   PetscCall(PetscMalloc1(1,&ppQ));

977:   d_P = d_Ba;
978:   PetscCall(PetscLogGpuTimeBegin());

980:   /* Pade' coefficients */
981:   c[0] = 1.0;
982:   for (k=1;k<=p;k++) c[k] = c[k-1]*(p+1-k)/(k*(2*p+1-k));

984:   /* Scaling */
985:   PetscCallCUBLAS(cublasXnrm2(cublasv2handle,ld2,d_As,one,&s));
986:   if (s>0.5) {
987:     sexp = PetscMax(0,(int)(PetscLogReal(s)/PetscLogReal(2.0))+2);
988:     scale = PetscPowRealInt(2.0,-sexp);
989:     PetscCallCUBLAS(cublasXscal(cublasv2handle,ld2,&scale,d_As,one));
990:     PetscCall(PetscLogGpuFlops(1.0*n*n));
991:   } else sexp = 0;

993:   /* Horner evaluation */
994:   PetscCallCUBLAS(cublasXgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n,n,n,&sone,d_As,ld,d_As,ld,&szero,d_A2,ld));
995:   PetscCall(PetscLogGpuFlops(2.0*n*n*n));
996:   PetscCallCUDA(cudaMemset(d_Q,0,sizeof(PetscScalar)*ld2));
997:   PetscCallCUDA(cudaMemset(d_P,0,sizeof(PetscScalar)*ld2));
998:   PetscCall(set_diagonal(n,d_Q,ld,c[p]));
999:   PetscCall(set_diagonal(n,d_P,ld,c[p-1]));

1001:   odd = PETSC_TRUE;
1002:   for (k=p-1;k>0;k--) {
1003:     if (odd) {
1004:       PetscCallCUBLAS(cublasXgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n,n,n,&sone,d_Q,ld,d_A2,ld,&szero,d_W,ld));
1005:       SlepcSwap(d_Q,d_W,aux);
1006:       PetscCall(shift_diagonal(n,d_Q,ld,c[k-1]));
1007:       odd = PETSC_FALSE;
1008:     } else {
1009:       PetscCallCUBLAS(cublasXgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n,n,n,&sone,d_P,ld,d_A2,ld,&szero,d_W,ld));
1010:       SlepcSwap(d_P,d_W,aux);
1011:       PetscCall(shift_diagonal(n,d_P,ld,c[k-1]));
1012:       odd = PETSC_TRUE;
1013:     }
1014:     PetscCall(PetscLogGpuFlops(2.0*n*n*n));
1015:   }
1016:   if (odd) {
1017:     PetscCallCUBLAS(cublasXgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n,n,n,&sone,d_Q,ld,d_As,ld,&szero,d_W,ld));
1018:     SlepcSwap(d_Q,d_W,aux);
1019:     PetscCallCUBLAS(cublasXaxpy(cublasv2handle,ld2,&smone,d_P,one,d_Q,one));

1021:     ppQ[0] = d_Q;
1022:     ppP[0] = d_P;
1023:     PetscCallCUDA(cudaMemcpy(d_ppQ,ppQ,sizeof(PetscScalar*),cudaMemcpyHostToDevice));
1024:     PetscCallCUDA(cudaMemcpy(d_ppP,ppP,sizeof(PetscScalar*),cudaMemcpyHostToDevice));

1026:     PetscCallCUBLAS(cublasXgetrfBatched(cublasv2handle,n,d_ppQ,ld,d_ipiv,d_info,one));
1027:     PetscCallCUDA(cudaMemcpy(&info,d_info,sizeof(PetscBLASInt),cudaMemcpyDeviceToHost));
1028:     PetscCheck(info>=0,PETSC_COMM_SELF,PETSC_ERR_LIB,"LAPACKgetrf: Illegal value on argument %" PetscBLASInt_FMT,PetscAbsInt(info));
1029:     PetscCheck(info<=0,PETSC_COMM_SELF,PETSC_ERR_MAT_LU_ZRPVT,"LAPACKgetrf: Matrix is singular. U(%" PetscBLASInt_FMT ",%" PetscBLASInt_FMT ") is zero",info,info);
1030:     PetscCallCUBLAS(cublasXgetrsBatched(cublasv2handle,CUBLAS_OP_N,n,n,(const PetscScalar **)d_ppQ,ld,d_ipiv,d_ppP,ld,&info,one));
1031:     PetscCheck(info>=0,PETSC_COMM_SELF,PETSC_ERR_LIB,"LAPACKgetri: Illegal value on argument %" PetscBLASInt_FMT,PetscAbsInt(info));
1032:     PetscCheck(info<=0,PETSC_COMM_SELF,PETSC_ERR_MAT_LU_ZRPVT,"LAPACKgetri: Matrix is singular. U(%" PetscBLASInt_FMT ",%" PetscBLASInt_FMT ") is zero",info,info);
1033:     PetscCallCUBLAS(cublasXscal(cublasv2handle,ld2,&stwo,d_P,one));
1034:     PetscCall(shift_diagonal(n,d_P,ld,sone));
1035:     PetscCallCUBLAS(cublasXscal(cublasv2handle,ld2,&smone,d_P,one));
1036:   } else {
1037:     PetscCallCUBLAS(cublasXgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n,n,n,&sone,d_P,ld,d_As,ld,&szero,d_W,ld));
1038:     SlepcSwap(d_P,d_W,aux);
1039:     PetscCallCUBLAS(cublasXaxpy(cublasv2handle,ld2,&smone,d_P,one,d_Q,one));

1041:     ppQ[0] = d_Q;
1042:     ppP[0] = d_P;
1043:     PetscCallCUDA(cudaMemcpy(d_ppQ,ppQ,sizeof(PetscScalar*),cudaMemcpyHostToDevice));
1044:     PetscCallCUDA(cudaMemcpy(d_ppP,ppP,sizeof(PetscScalar*),cudaMemcpyHostToDevice));

1046:     PetscCallCUBLAS(cublasXgetrfBatched(cublasv2handle,n,d_ppQ,ld,d_ipiv,d_info,one));
1047:     PetscCallCUDA(cudaMemcpy(&info,d_info,sizeof(PetscBLASInt),cudaMemcpyDeviceToHost));
1048:     PetscCheck(info>=0,PETSC_COMM_SELF,PETSC_ERR_LIB,"LAPACKgetrf: Illegal value on argument %" PetscBLASInt_FMT,PetscAbsInt(info));
1049:     PetscCheck(info<=0,PETSC_COMM_SELF,PETSC_ERR_MAT_LU_ZRPVT,"LAPACKgetrf: Matrix is singular. U(%" PetscBLASInt_FMT ",%" PetscBLASInt_FMT ") is zero",info,info);
1050:     PetscCallCUBLAS(cublasXgetrsBatched(cublasv2handle,CUBLAS_OP_N,n,n,(const PetscScalar **)d_ppQ,ld,d_ipiv,d_ppP,ld,&info,one));
1051:     PetscCheck(info>=0,PETSC_COMM_SELF,PETSC_ERR_LIB,"LAPACKgetri: Illegal value on argument %" PetscBLASInt_FMT,PetscAbsInt(info));
1052:     PetscCheck(info<=0,PETSC_COMM_SELF,PETSC_ERR_MAT_LU_ZRPVT,"LAPACKgetri: Matrix is singular. U(%" PetscBLASInt_FMT ",%" PetscBLASInt_FMT ") is zero",info,info);
1053:     PetscCallCUBLAS(cublasXscal(cublasv2handle,ld2,&stwo,d_P,one));
1054:     PetscCall(shift_diagonal(n,d_P,ld,sone));
1055:   }
1056:   PetscCall(PetscLogGpuFlops(2.0*n*n*n+2.0*n*n*n/3.0+4.0*n*n));

1058:   for (k=1;k<=sexp;k++) {
1059:     PetscCallCUBLAS(cublasXgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n,n,n,&sone,d_P,ld,d_P,ld,&szero,d_W,ld));
1060:     PetscCallCUDA(cudaMemcpy(d_P,d_W,sizeof(PetscScalar)*ld2,cudaMemcpyDeviceToDevice));
1061:   }
1062:   PetscCall(PetscLogGpuFlops(2.0*n*n*n*sexp));

1064:   PetscCall(PetscLogGpuTimeEnd());
1065:   PetscCallCUDA(cudaFree(d_Q));
1066:   PetscCallCUDA(cudaFree(d_W));
1067:   PetscCallCUDA(cudaFree(d_A2));
1068:   PetscCallCUDA(cudaFree(d_ipiv));
1069:   PetscCallCUDA(cudaFree(d_info));
1070:   PetscCallCUDA(cudaFree(d_ppP));
1071:   PetscCallCUDA(cudaFree(d_ppQ));

1073:   PetscCall(PetscFree(ppP));
1074:   PetscCall(PetscFree(ppQ));

1076:   if (d_P!=d_Ba) PetscCallCUDA(cudaMemcpy(d_Ba,d_P,sizeof(PetscScalar)*ld2,cudaMemcpyDeviceToDevice));
1077:   if (A!=B) {
1078:     if (s>0.5) {  /* undo scaling */
1079:       scale = 1.0/scale;
1080:       PetscCallCUBLAS(cublasXscal(cublasv2handle,ld2,&scale,d_As,one));
1081:     }
1082:     PetscCall(MatDenseCUDARestoreArrayRead(A,(const PetscScalar**)&d_As));
1083:   } else PetscCallCUDA(cudaFree(d_As));
1084:   PetscCall(MatDenseCUDARestoreArrayWrite(B,&d_Ba));
1085:   PetscFunctionReturn(PETSC_SUCCESS);
1086: }

1088: #if defined(PETSC_HAVE_MAGMA)
1089: #include <slepcmagma.h>

1091: PetscErrorCode FNEvaluateFunctionMat_Exp_Pade_CUDAm(FN fn,Mat A,Mat B)
1092: {
1093:   PetscBLASInt      n=0,ld,ld2,*piv,one=1;
1094:   PetscInt          m,k,sexp;
1095:   PetscBool         odd;
1096:   const PetscInt    p=MAX_PADE;
1097:   PetscReal         c[MAX_PADE+1],s;
1098:   PetscScalar       scale,smone=-1.0,sone=1.0,stwo=2.0,szero=0.0;
1099:   const PetscScalar *Aa;
1100:   PetscScalar       *d_Ba,*d_As,*d_A2,*d_Q,*d_P,*d_W,*aux;
1101:   cublasHandle_t    cublasv2handle;

1103:   PetscFunctionBegin;
1104:   PetscCall(PetscDeviceInitialize(PETSC_DEVICE_CUDA)); /* For CUDA event timers */
1105:   PetscCall(PetscCUBLASGetHandle(&cublasv2handle));
1106:   PetscCall(SlepcMagmaInit());
1107:   PetscCall(MatGetSize(A,&m,NULL));
1108:   PetscCall(PetscBLASIntCast(m,&n));
1109:   ld  = n;
1110:   ld2 = ld*ld;
1111:   if (A==B) {
1112:     PetscCallCUDA(cudaMalloc((void **)&d_As,sizeof(PetscScalar)*m*m));
1113:     PetscCall(MatDenseCUDAGetArrayRead(A,&Aa));
1114:     PetscCallCUDA(cudaMemcpy(d_As,Aa,sizeof(PetscScalar)*ld2,cudaMemcpyDeviceToDevice));
1115:     PetscCall(MatDenseCUDARestoreArrayRead(A,&Aa));
1116:   } else PetscCall(MatDenseCUDAGetArrayRead(A,(const PetscScalar**)&d_As));
1117:   PetscCall(MatDenseCUDAGetArrayWrite(B,&d_Ba));

1119:   PetscCallCUDA(cudaMalloc((void **)&d_Q,sizeof(PetscScalar)*m*m));
1120:   PetscCallCUDA(cudaMalloc((void **)&d_W,sizeof(PetscScalar)*m*m));
1121:   PetscCallCUDA(cudaMalloc((void **)&d_A2,sizeof(PetscScalar)*m*m));

1123:   PetscCall(PetscMalloc1(n,&piv));

1125:   d_P = d_Ba;
1126:   PetscCall(PetscLogGpuTimeBegin());

1128:   /* Pade' coefficients */
1129:   c[0] = 1.0;
1130:   for (k=1;k<=p;k++) c[k] = c[k-1]*(p+1-k)/(k*(2*p+1-k));

1132:   /* Scaling */
1133:   PetscCallCUBLAS(cublasXnrm2(cublasv2handle,ld2,d_As,one,&s));
1134:   PetscCall(PetscLogGpuFlops(1.0*n*n));

1136:   if (s>0.5) {
1137:     sexp = PetscMax(0,(int)(PetscLogReal(s)/PetscLogReal(2.0))+2);
1138:     scale = PetscPowRealInt(2.0,-sexp);
1139:     PetscCallCUBLAS(cublasXscal(cublasv2handle,ld2,&scale,d_As,one));
1140:     PetscCall(PetscLogGpuFlops(1.0*n*n));
1141:   } else sexp = 0;

1143:   /* Horner evaluation */
1144:   PetscCallCUBLAS(cublasXgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n,n,n,&sone,d_As,ld,d_As,ld,&szero,d_A2,ld));
1145:   PetscCall(PetscLogGpuFlops(2.0*n*n*n));
1146:   PetscCallCUDA(cudaMemset(d_Q,0,sizeof(PetscScalar)*ld2));
1147:   PetscCallCUDA(cudaMemset(d_P,0,sizeof(PetscScalar)*ld2));
1148:   PetscCall(set_diagonal(n,d_Q,ld,c[p]));
1149:   PetscCall(set_diagonal(n,d_P,ld,c[p-1]));

1151:   odd = PETSC_TRUE;
1152:   for (k=p-1;k>0;k--) {
1153:     if (odd) {
1154:       PetscCallCUBLAS(cublasXgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n,n,n,&sone,d_Q,ld,d_A2,ld,&szero,d_W,ld));
1155:       SlepcSwap(d_Q,d_W,aux);
1156:       PetscCall(shift_diagonal(n,d_Q,ld,c[k-1]));
1157:       odd = PETSC_FALSE;
1158:     } else {
1159:       PetscCallCUBLAS(cublasXgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n,n,n,&sone,d_P,ld,d_A2,ld,&szero,d_W,ld));
1160:       SlepcSwap(d_P,d_W,aux);
1161:       PetscCall(shift_diagonal(n,d_P,ld,c[k-1]));
1162:       odd = PETSC_TRUE;
1163:     }
1164:     PetscCall(PetscLogGpuFlops(2.0*n*n*n));
1165:   }
1166:   if (odd) {
1167:     PetscCallCUBLAS(cublasXgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n,n,n,&sone,d_Q,ld,d_As,ld,&szero,d_W,ld));
1168:     SlepcSwap(d_Q,d_W,aux);
1169:     PetscCallCUBLAS(cublasXaxpy(cublasv2handle,ld2,&smone,d_P,one,d_Q,one));
1170:     PetscCallMAGMA(magma_xgesv_gpu,n,n,d_Q,ld,piv,d_P,ld);
1171:     PetscCallCUBLAS(cublasXscal(cublasv2handle,ld2,&stwo,d_P,one));
1172:     PetscCall(shift_diagonal(n,d_P,ld,sone));
1173:     PetscCallCUBLAS(cublasXscal(cublasv2handle,ld2,&smone,d_P,one));
1174:   } else {
1175:     PetscCallCUBLAS(cublasXgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n,n,n,&sone,d_P,ld,d_As,ld,&szero,d_W,ld));
1176:     SlepcSwap(d_P,d_W,aux);
1177:     PetscCallCUBLAS(cublasXaxpy(cublasv2handle,ld2,&smone,d_P,one,d_Q,one));
1178:     PetscCallMAGMA(magma_xgesv_gpu,n,n,d_Q,ld,piv,d_P,ld);
1179:     PetscCallCUBLAS(cublasXscal(cublasv2handle,ld2,&stwo,d_P,one));
1180:     PetscCall(shift_diagonal(n,d_P,ld,sone));
1181:   }
1182:   PetscCall(PetscLogGpuFlops(2.0*n*n*n+2.0*n*n*n/3.0+4.0*n*n));

1184:   for (k=1;k<=sexp;k++) {
1185:     PetscCallCUBLAS(cublasXgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n,n,n,&sone,d_P,ld,d_P,ld,&szero,d_W,ld));
1186:     PetscCallCUDA(cudaMemcpy(d_P,d_W,sizeof(PetscScalar)*ld2,cudaMemcpyDeviceToDevice));
1187:   }
1188:   PetscCall(PetscLogGpuFlops(2.0*n*n*n*sexp));

1190:   PetscCall(PetscLogGpuTimeEnd());
1191:   PetscCallCUDA(cudaFree(d_Q));
1192:   PetscCallCUDA(cudaFree(d_W));
1193:   PetscCallCUDA(cudaFree(d_A2));
1194:   PetscCall(PetscFree(piv));

1196:   if (d_P!=d_Ba) PetscCallCUDA(cudaMemcpy(d_Ba,d_P,sizeof(PetscScalar)*ld2,cudaMemcpyDeviceToDevice));
1197:   if (A!=B) {
1198:     if (s>0.5) {  /* undo scaling */
1199:       scale = 1.0/scale;
1200:       PetscCallCUBLAS(cublasXscal(cublasv2handle,ld2,&scale,d_As,one));
1201:     }
1202:     PetscCall(MatDenseCUDARestoreArrayRead(A,(const PetscScalar**)&d_As));
1203:   } else PetscCallCUDA(cudaFree(d_As));
1204:   PetscCall(MatDenseCUDARestoreArrayWrite(B,&d_Ba));
1205:   PetscFunctionReturn(PETSC_SUCCESS);
1206: }

1208: /*
1209:  * Matrix exponential implementation based on algorithm and matlab code by N. Higham and co-authors
1210:  *
1211:  *     N. J. Higham, "The scaling and squaring method for the matrix exponential
1212:  *     revisited", SIAM J. Matrix Anal. Appl. 26(4):1179-1193, 2005.
1213:  */
1214: PetscErrorCode FNEvaluateFunctionMat_Exp_Higham_CUDAm(FN fn,Mat A,Mat B)
1215: {
1216:   PetscBLASInt      n_=0,n2,*ipiv,one=1;
1217:   PetscInt          n,m,j,s;
1218:   PetscScalar       scale,smone=-1.0,sone=1.0,stwo=2.0,szero=0.0;
1219:   PetscScalar       *d_Ba,*Apowers[5],*d_Apowers[5],*d_Q,*d_P,*d_W,*work,*d_work,*aux;
1220:   const PetscScalar *Aa,*c;
1221:   const PetscScalar c3[4]   = { 120, 60, 12, 1 };
1222:   const PetscScalar c5[6]   = { 30240, 15120, 3360, 420, 30, 1 };
1223:   const PetscScalar c7[8]   = { 17297280, 8648640, 1995840, 277200, 25200, 1512, 56, 1 };
1224:   const PetscScalar c9[10]  = { 17643225600, 8821612800, 2075673600, 302702400, 30270240,
1225:     2162160, 110880, 3960, 90, 1 };
1226:   const PetscScalar c13[14] = { 64764752532480000, 32382376266240000, 7771770303897600,
1227:     1187353796428800,  129060195264000,   10559470521600,
1228:     670442572800,      33522128640,       1323241920,
1229:     40840800,          960960,            16380,  182,  1 };
1230:   cublasHandle_t    cublasv2handle;

1232:   PetscFunctionBegin;
1233:   PetscCall(PetscDeviceInitialize(PETSC_DEVICE_CUDA)); /* For CUDA event timers */
1234:   PetscCall(PetscCUBLASGetHandle(&cublasv2handle));
1235:   PetscCall(SlepcMagmaInit());
1236:   PetscCall(MatGetSize(A,&n,NULL));
1237:   PetscCall(PetscBLASIntCast(n,&n_));
1238:   n2 = n_*n_;
1239:   PetscCall(PetscMalloc2(8*n*n,&work,n,&ipiv));
1240:   /* Matrix powers */
1241:   Apowers[0] = work;                  /* Apowers[0] = A   */
1242:   Apowers[1] = Apowers[0] + n*n;      /* Apowers[1] = A^2 */
1243:   Apowers[2] = Apowers[1] + n*n;      /* Apowers[2] = A^4 */
1244:   Apowers[3] = Apowers[2] + n*n;      /* Apowers[3] = A^6 */
1245:   Apowers[4] = Apowers[3] + n*n;      /* Apowers[4] = A^8 */
1246:   if (A==B) {
1247:     PetscCallCUDA(cudaMalloc((void**)&d_work,7*n*n*sizeof(PetscScalar)));
1248:     d_Apowers[0] = d_work;              /* d_Apowers[0] = A   */
1249:     d_Apowers[1] = d_Apowers[0] + n*n;  /* d_Apowers[1] = A^2 */
1250:     PetscCall(MatDenseCUDAGetArrayRead(A,&Aa));
1251:     PetscCallCUDA(cudaMemcpy(d_Apowers[0],Aa,n2*sizeof(PetscScalar),cudaMemcpyDeviceToDevice));
1252:     PetscCall(MatDenseCUDARestoreArrayRead(A,&Aa));
1253:   } else {
1254:     PetscCallCUDA(cudaMalloc((void**)&d_work,6*n*n*sizeof(PetscScalar)));
1255:     PetscCall(MatDenseCUDAGetArrayRead(A,(const PetscScalar**)&d_Apowers[0]));
1256:     d_Apowers[1] = d_work;              /* d_Apowers[1] = A^2 */
1257:   }
1258:   PetscCall(MatDenseCUDAGetArrayWrite(B,&d_Ba));
1259:   d_Apowers[2] = d_Apowers[1] + n*n;    /* d_Apowers[2] = A^4 */
1260:   d_Apowers[3] = d_Apowers[2] + n*n;    /* d_Apowers[3] = A^6 */
1261:   d_Apowers[4] = d_Apowers[3] + n*n;    /* d_Apowers[4] = A^8 */
1262:   d_Q = d_Apowers[4] + n*n;
1263:   d_W = d_Q + n*n;

1265:   PetscCall(PetscLogGpuTimeBegin());

1267:   PetscCallCUBLAS(cublasXgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n_,n_,n_,&sone,d_Apowers[0],n_,d_Apowers[0],n_,&szero,d_Apowers[1],n_));
1268:   PetscCallCUBLAS(cublasXgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n_,n_,n_,&sone,d_Apowers[1],n_,d_Apowers[1],n_,&szero,d_Apowers[2],n_));
1269:   PetscCallCUBLAS(cublasXgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n_,n_,n_,&sone,d_Apowers[1],n_,d_Apowers[2],n_,&szero,d_Apowers[3],n_));
1270:   PetscCall(PetscLogGpuFlops(6.0*n*n*n));

1272:   PetscCallCUDA(cudaMemcpy(Apowers[0],d_Apowers[0],n2*sizeof(PetscScalar),cudaMemcpyDeviceToHost));
1273:   PetscCallCUDA(cudaMemcpy(Apowers[1],d_Apowers[1],3*n2*sizeof(PetscScalar),cudaMemcpyDeviceToHost));
1274:   PetscCall(PetscLogGpuToCpu(4*n2*sizeof(PetscScalar)));
1275:   /* Compute scaling parameter and order of Pade approximant */
1276:   PetscCall(expm_params(n,Apowers,&s,&m,Apowers[4]));

1278:   if (s) { /* rescale */
1279:     for (j=0;j<4;j++) {
1280:       scale = PetscPowRealInt(2.0,-PetscMax(2*j,1)*s);
1281:       PetscCallCUBLAS(cublasXscal(cublasv2handle,n2,&scale,d_Apowers[j],one));
1282:     }
1283:     PetscCall(PetscLogGpuFlops(4.0*n*n));
1284:   }

1286:   /* Evaluate the Pade approximant */
1287:   switch (m) {
1288:     case 3:  c = c3;  break;
1289:     case 5:  c = c5;  break;
1290:     case 7:  c = c7;  break;
1291:     case 9:  c = c9;  break;
1292:     case 13: c = c13; break;
1293:     default: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Wrong value of m %" PetscInt_FMT,m);
1294:   }
1295:   d_P = d_Ba;
1296:   switch (m) {
1297:     case 3:
1298:     case 5:
1299:     case 7:
1300:     case 9:
1301:       if (m==9) PetscCallCUBLAS(cublasXgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n_,n_,n_,&sone,d_Apowers[1],n_,d_Apowers[3],n_,&szero,d_Apowers[4],n_));
1302:       PetscCallCUDA(cudaMemset(d_P,0,sizeof(PetscScalar)*n2));
1303:       PetscCallCUDA(cudaMemset(d_Q,0,sizeof(PetscScalar)*n2));
1304:       PetscCall(set_diagonal(n,d_P,n,c[1]));
1305:       PetscCall(set_diagonal(n,d_Q,n,c[0]));
1306:       for (j=m;j>=3;j-=2) {
1307:         PetscCallCUBLAS(cublasXaxpy(cublasv2handle,n2,&c[j],d_Apowers[(j+1)/2-1],one,d_P,one));
1308:         PetscCallCUBLAS(cublasXaxpy(cublasv2handle,n2,&c[j-1],d_Apowers[(j+1)/2-1],one,d_Q,one));
1309:         PetscCall(PetscLogGpuFlops(4.0*n*n));
1310:       }
1311:       PetscCallCUBLAS(cublasXgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n_,n_,n_,&sone,d_Apowers[0],n_,d_P,n_,&szero,d_W,n_));
1312:       PetscCall(PetscLogGpuFlops(2.0*n*n*n));
1313:       SlepcSwap(d_P,d_W,aux);
1314:       break;
1315:     case 13:
1316:       /*  P = A*(Apowers[3]*(c[13]*Apowers[3] + c[11]*Apowers[2] + c[9]*Apowers[1])
1317:           + c[7]*Apowers[3] + c[5]*Apowers[2] + c[3]*Apowers[1] + c[1]*I)       */
1318:       PetscCallCUDA(cudaMemcpy(d_P,d_Apowers[3],n2*sizeof(PetscScalar),cudaMemcpyDeviceToDevice));
1319:       PetscCallCUBLAS(cublasXscal(cublasv2handle,n2,&c[13],d_P,one));
1320:       PetscCallCUBLAS(cublasXaxpy(cublasv2handle,n2,&c[11],d_Apowers[2],one,d_P,one));
1321:       PetscCallCUBLAS(cublasXaxpy(cublasv2handle,n2,&c[9],d_Apowers[1],one,d_P,one));
1322:       PetscCallCUBLAS(cublasXgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n_,n_,n_,&sone,d_Apowers[3],n_,d_P,n_,&szero,d_W,n_));
1323:       PetscCall(PetscLogGpuFlops(5.0*n*n+2.0*n*n*n));

1325:       PetscCallCUDA(cudaMemset(d_P,0,sizeof(PetscScalar)*n2));
1326:       PetscCall(set_diagonal(n,d_P,n,c[1]));
1327:       PetscCallCUBLAS(cublasXaxpy(cublasv2handle,n2,&c[7],d_Apowers[3],one,d_P,one));
1328:       PetscCallCUBLAS(cublasXaxpy(cublasv2handle,n2,&c[5],d_Apowers[2],one,d_P,one));
1329:       PetscCallCUBLAS(cublasXaxpy(cublasv2handle,n2,&c[3],d_Apowers[1],one,d_P,one));
1330:       PetscCallCUBLAS(cublasXaxpy(cublasv2handle,n2,&sone,d_P,one,d_W,one));
1331:       PetscCallCUBLAS(cublasXgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n_,n_,n_,&sone,d_Apowers[0],n_,d_W,n_,&szero,d_P,n_));
1332:       PetscCall(PetscLogGpuFlops(7.0*n*n+2.0*n*n*n));
1333:       /*  Q = Apowers[3]*(c[12]*Apowers[3] + c[10]*Apowers[2] + c[8]*Apowers[1])
1334:           + c[6]*Apowers[3] + c[4]*Apowers[2] + c[2]*Apowers[1] + c[0]*I        */
1335:       PetscCallCUDA(cudaMemcpy(d_Q,d_Apowers[3],n2*sizeof(PetscScalar),cudaMemcpyDeviceToDevice));
1336:       PetscCallCUBLAS(cublasXscal(cublasv2handle,n2,&c[12],d_Q,one));
1337:       PetscCallCUBLAS(cublasXaxpy(cublasv2handle,n2,&c[10],d_Apowers[2],one,d_Q,one));
1338:       PetscCallCUBLAS(cublasXaxpy(cublasv2handle,n2,&c[8],d_Apowers[1],one,d_Q,one));
1339:       PetscCallCUBLAS(cublasXgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n_,n_,n_,&sone,d_Apowers[3],n_,d_Q,n_,&szero,d_W,n_));
1340:       PetscCall(PetscLogGpuFlops(5.0*n*n+2.0*n*n*n));
1341:       PetscCallCUDA(cudaMemset(d_Q,0,sizeof(PetscScalar)*n2));
1342:       PetscCall(set_diagonal(n,d_Q,n,c[0]));
1343:       PetscCallCUBLAS(cublasXaxpy(cublasv2handle,n2,&c[6],d_Apowers[3],one,d_Q,one));
1344:       PetscCallCUBLAS(cublasXaxpy(cublasv2handle,n2,&c[4],d_Apowers[2],one,d_Q,one));
1345:       PetscCallCUBLAS(cublasXaxpy(cublasv2handle,n2,&c[2],d_Apowers[1],one,d_Q,one));
1346:       PetscCallCUBLAS(cublasXaxpy(cublasv2handle,n2,&sone,d_W,one,d_Q,one));
1347:       PetscCall(PetscLogGpuFlops(7.0*n*n));
1348:       break;
1349:     default: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Wrong value of m %" PetscInt_FMT,m);
1350:   }
1351:   PetscCallCUBLAS(cublasXaxpy(cublasv2handle,n2,&smone,d_P,one,d_Q,one));

1353:   PetscCallMAGMA(magma_xgesv_gpu,n_,n_,d_Q,n_,ipiv,d_P,n_);

1355:   PetscCallCUBLAS(cublasXscal(cublasv2handle,n2,&stwo,d_P,one));
1356:   PetscCall(shift_diagonal(n,d_P,n,sone));
1357:   PetscCall(PetscLogGpuFlops(2.0*n*n*n/3.0+4.0*n*n));

1359:   /* Squaring */
1360:   for (j=1;j<=s;j++) {
1361:     PetscCallCUBLAS(cublasXgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n_,n_,n_,&sone,d_P,n_,d_P,n_,&szero,d_W,n_));
1362:     SlepcSwap(d_P,d_W,aux);
1363:   }
1364:   PetscCall(PetscLogGpuFlops(2.0*n*n*n*s));
1365:   PetscCall(PetscLogGpuTimeEnd());

1367:   PetscCall(PetscFree2(work,ipiv));
1368:   if (d_P!=d_Ba) PetscCallCUDA(cudaMemcpy(d_Ba,d_P,n2*sizeof(PetscScalar),cudaMemcpyDeviceToDevice));
1369:   if (A!=B) {
1370:     if (s>0.5) {  /* undo scaling */
1371:       scale = 1.0/PetscPowRealInt(2.0,-s);
1372:       PetscCallCUBLAS(cublasXscal(cublasv2handle,n2,&scale,d_Apowers[0],one));
1373:     }
1374:     PetscCall(MatDenseCUDARestoreArrayRead(A,(const PetscScalar**)&d_Apowers[0]));
1375:   }
1376:   PetscCall(MatDenseCUDARestoreArrayWrite(B,&d_Ba));
1377:   PetscCallCUDA(cudaFree(d_work));
1378:   PetscFunctionReturn(PETSC_SUCCESS);
1379: }

1381: /*
1382:  * Matrix exponential implementation based on algorithm and matlab code by Stefan Guettel
1383:  * and Yuji Nakatsukasa
1384:  *
1385:  *     Stefan Guettel and Yuji Nakatsukasa, "Scaled and Squared Subdiagonal Pade'
1386:  *     Approximation for the Matrix Exponential",
1387:  *     SIAM J. Matrix Anal. Appl. 37(1):145-170, 2016.
1388:  *     https://doi.org/10.1137/15M1027553
1389:  */
1390: PetscErrorCode FNEvaluateFunctionMat_Exp_GuettelNakatsukasa_CUDAm(FN fn,Mat A,Mat B)
1391: {
1392:   PetscInt          i,j,n_,s,k,m,mod;
1393:   PetscBLASInt      n=0,n2=0,irsize=0,rsizediv2,ipsize=0,iremainsize=0,query=-1,*piv,minlen,lwork=0,one=1;
1394:   PetscReal         nrm,shift=0.0,rone=1.0,rzero=0.0;
1395: #if defined(PETSC_USE_COMPLEX)
1396:   PetscReal         *rwork=NULL;
1397: #endif
1398:   PetscComplex      *d_As,*d_RR,*d_RR2,*d_expmA,*d_expmA2,*d_Maux,*d_Maux2,rsize,*r,psize,*p,remainsize,*remainterm,*rootp,*rootq,mult=0.0,scale,cone=1.0,czero=0.0,*aux;
1399:   PetscScalar       *d_Aa,*d_Ba,*d_Ba2,*Maux,*d_sMaux,*wr,*wi,expshift,sone=1.0,szero=0.0,*work,work1,*saux;
1400:   const PetscScalar *Aa;
1401:   PetscBool         isreal,*d_isreal,flg;
1402:   cublasHandle_t    cublasv2handle;

1404:   PetscFunctionBegin;
1405:   PetscCall(PetscDeviceInitialize(PETSC_DEVICE_CUDA)); /* For CUDA event timers */
1406:   PetscCall(PetscCUBLASGetHandle(&cublasv2handle));
1407:   PetscCall(SlepcMagmaInit());
1408:   PetscCall(MatGetSize(A,&n_,NULL));
1409:   PetscCall(PetscBLASIntCast(n_,&n));
1410:   PetscCall(PetscBLASIntCast(n*n,&n2));

1412:   if (A==B) {
1413:     PetscCallCUDA(cudaMalloc((void **)&d_Aa,sizeof(PetscScalar)*n2));
1414:     PetscCall(MatDenseCUDAGetArrayRead(A,&Aa));
1415:     PetscCallCUDA(cudaMemcpy(d_Aa,Aa,sizeof(PetscScalar)*n2,cudaMemcpyDeviceToDevice));
1416:     PetscCall(MatDenseCUDARestoreArrayRead(A,&Aa));
1417:   } else PetscCall(MatDenseCUDAGetArrayRead(A,(const PetscScalar**)&d_Aa));
1418:   PetscCall(MatDenseCUDAGetArrayWrite(B,&d_Ba));
1419:   d_Ba2 = d_Ba;

1421:   PetscCallCUDA(cudaMalloc((void **)&d_isreal,sizeof(PetscBool)));
1422:   PetscCallCUDA(cudaMalloc((void **)&d_sMaux,sizeof(PetscScalar)*n2));
1423:   PetscCallCUDA(cudaMalloc((void **)&d_Maux,sizeof(PetscComplex)*n2));

1425:   PetscCall(PetscLogGpuTimeBegin());
1426:   d_Maux2 = d_Maux;
1427:   PetscCall(PetscOptionsGetReal(NULL,NULL,"-fn_expm_estimated_eig",&shift,&flg));
1428:   if (!flg) {
1429:     PetscCall(PetscMalloc2(n,&wr,n,&wi));
1430:     /* estimate rightmost eigenvalue and shift A with it */
1431:     PetscCall(PetscMalloc1(n2,&Maux));
1432:     PetscCall(MatDenseGetArrayRead(A,&Aa));
1433:     PetscCall(PetscArraycpy(Maux,Aa,n2));
1434:     PetscCall(MatDenseRestoreArrayRead(A,&Aa));
1435: #if !defined(PETSC_USE_COMPLEX)
1436:     PetscCallMAGMA(magma_xgeev,MagmaNoVec,MagmaNoVec,n,Maux,n,wr,wi,NULL,n,NULL,n,&work1,query);
1437:     PetscCall(PetscBLASIntCast((PetscInt)PetscRealPart(work1),&lwork));
1438:     PetscCall(PetscMalloc1(lwork,&work));
1439:     PetscCallMAGMA(magma_xgeev,MagmaNoVec,MagmaNoVec,n,Maux,n,wr,wi,NULL,n,NULL,n,work,lwork);
1440:     PetscCall(PetscFree(work));
1441: #else
1442:     PetscCallMAGMA(magma_xgeev,MagmaNoVec,MagmaNoVec,n,Maux,n,wr,NULL,n,NULL,n,&work1,query,rwork);
1443:     PetscCall(PetscBLASIntCast((PetscInt)PetscRealPart(work1),&lwork));
1444:     PetscCall(PetscMalloc2(2*n,&rwork,lwork,&work));
1445:     PetscCallMAGMA(magma_xgeev,MagmaNoVec,MagmaNoVec,n,Maux,n,wr,NULL,n,NULL,n,work,lwork,rwork);
1446:     PetscCall(PetscFree2(rwork,work));
1447: #endif
1448:     PetscCall(PetscFree(Maux));
1449:     PetscCall(PetscLogGpuFlops(25.0*n*n*n+(n*n*n)/3.0+1.0*n*n*n));

1451:     shift = PetscRealPart(wr[0]);
1452:     for (i=1;i<n;i++) {
1453:       if (PetscRealPart(wr[i]) > shift) shift = PetscRealPart(wr[i]);
1454:     }
1455:     PetscCall(PetscFree2(wr,wi));
1456:   }
1457:   /* shift so that largest real part is (about) 0 */
1458:   PetscCallCUDA(cudaMemcpy(d_sMaux,d_Aa,sizeof(PetscScalar)*n2,cudaMemcpyDeviceToDevice));
1459:   if (shift) {
1460:     PetscCall(shift_diagonal(n,d_sMaux,n,-shift));
1461:     PetscCall(PetscLogGpuFlops(1.0*n));
1462:   }
1463: #if defined(PETSC_USE_COMPLEX)
1464:   PetscCallCUDA(cudaMemcpy(d_Maux,d_Aa,sizeof(PetscScalar)*n2,cudaMemcpyDeviceToDevice));
1465:   if (shift) {
1466:     PetscCall(shift_diagonal(n,d_Maux,n,-shift));
1467:     PetscCall(PetscLogGpuFlops(1.0*n));
1468:   }
1469: #endif
1470:   if (A!=B) PetscCall(MatDenseCUDARestoreArrayRead(A,(const PetscScalar**)&d_Aa));
1471:   else PetscCallCUDA(cudaFree(d_Aa));

1473:   /* estimate norm(A) and select the scaling factor */
1474:   PetscCallCUBLAS(cublasXnrm2(cublasv2handle,n2,d_sMaux,one,&nrm));
1475:   PetscCall(PetscLogGpuFlops(2.0*n*n));
1476:   PetscCall(sexpm_params(nrm,&s,&k,&m));
1477:   if (s==0 && k==1 && m==0) { /* exp(A) = I+A to eps! */
1478:     if (shift) expshift = PetscExpReal(shift);
1479:     PetscCall(shift_Cdiagonal(n,d_Maux,n,rone,rzero));
1480:     if (shift) {
1481:       PetscCallCUBLAS(cublasXscal(cublasv2handle,n2,&expshift,d_sMaux,one));
1482:       PetscCall(PetscLogGpuFlops(1.0*(n+n2)));
1483:     } else PetscCall(PetscLogGpuFlops(1.0*n));
1484:     PetscCallCUDA(cudaMemcpy(d_Ba,d_sMaux,sizeof(PetscScalar)*n2,cudaMemcpyDeviceToDevice));
1485:     PetscCallCUDA(cudaFree(d_isreal));
1486:     PetscCallCUDA(cudaFree(d_sMaux));
1487:     PetscCallCUDA(cudaFree(d_Maux));
1488:     PetscCall(MatDenseCUDARestoreArrayWrite(B,&d_Ba));
1489:     PetscFunctionReturn(PETSC_SUCCESS); /* quick return */
1490:   }

1492:   PetscCallCUDA(cudaMalloc((void **)&d_expmA,sizeof(PetscComplex)*n2));
1493:   PetscCallCUDA(cudaMalloc((void **)&d_As,sizeof(PetscComplex)*n2));
1494:   PetscCallCUDA(cudaMalloc((void **)&d_RR,sizeof(PetscComplex)*n2));
1495:   d_expmA2 = d_expmA; d_RR2 = d_RR;
1496:   PetscCall(PetscMalloc1(n,&piv));
1497:   /* scale matrix */
1498: #if !defined(PETSC_USE_COMPLEX)
1499:   PetscCall(copy_array2D_S2C(n,n,d_As,n,d_sMaux,n));
1500: #else
1501:   PetscCallCUDA(cudaMemcpy(d_As,d_sMaux,sizeof(PetscScalar)*n2,cudaMemcpyDeviceToDevice));
1502: #endif
1503:   scale = 1.0/PetscPowRealInt(2.0,s);
1504:   PetscCallCUBLAS(cublasXCscal(cublasv2handle,n2,(const cuComplex *)&scale,(cuComplex *)d_As,one));
1505:   PetscCall(SlepcLogGpuFlopsComplex(1.0*n2));

1507:   /* evaluate Pade approximant (partial fraction or product form) */
1508:   if (fn->method==3 || !m) { /* partial fraction */
1509:     PetscCall(getcoeffs(k,m,&rsize,&psize,&remainsize,PETSC_TRUE));
1510:     PetscCall(PetscBLASIntCast((PetscInt)PetscRealPartComplex(rsize),&irsize));
1511:     PetscCall(PetscBLASIntCast((PetscInt)PetscRealPartComplex(psize),&ipsize));
1512:     PetscCall(PetscBLASIntCast((PetscInt)PetscRealPartComplex(remainsize),&iremainsize));
1513:     PetscCall(PetscMalloc3(irsize,&r,ipsize,&p,iremainsize,&remainterm));
1514:     PetscCall(getcoeffs(k,m,r,p,remainterm,PETSC_FALSE));

1516:     PetscCallCUDA(cudaMemset(d_expmA,0,sizeof(PetscComplex)*n2));
1517: #if !defined(PETSC_USE_COMPLEX)
1518:     isreal = PETSC_TRUE;
1519: #else
1520:     PetscCall(getisreal_array2D(n,n,d_Maux,n,d_isreal));
1521:     PetscCallCUDA(cudaMemcpy(&isreal,d_isreal,sizeof(PetscBool),cudaMemcpyDeviceToHost));
1522: #endif
1523:     if (isreal) {
1524:       rsizediv2 = irsize/2;
1525:       for (i=0;i<rsizediv2;i++) { /* use partial fraction to get R(As) */
1526:         PetscCallCUDA(cudaMemcpy(d_Maux,d_As,sizeof(PetscComplex)*n2,cudaMemcpyDeviceToDevice));
1527:         PetscCallCUDA(cudaMemset(d_RR,0,sizeof(PetscComplex)*n2));
1528:         PetscCall(shift_Cdiagonal(n,d_Maux,n,-PetscRealPartComplex(p[2*i]),-PetscImaginaryPartComplex(p[2*i])));
1529:         PetscCall(set_Cdiagonal(n,d_RR,n,PetscRealPartComplex(r[2*i]),PetscImaginaryPartComplex(r[2*i])));
1530:         PetscCallMAGMA(magma_Cgesv_gpu,n,n,d_Maux,n,piv,d_RR,n);
1531:         PetscCall(add_array2D_Conj(n,n,d_RR,n));
1532:         PetscCallCUBLAS(cublasXCaxpy(cublasv2handle,n2,&cone,d_RR,one,d_expmA,one));
1533:         /* shift(n) + gesv + axpy(n2) */
1534:         PetscCall(SlepcLogGpuFlopsComplex(1.0*n+(2.0*n*n*n/3.0+2.0*n*n*n)+2.0*n2));
1535:       }

1537:       mod = ipsize % 2;
1538:       if (mod) {
1539:         PetscCallCUDA(cudaMemcpy(d_Maux,d_As,sizeof(PetscComplex)*n2,cudaMemcpyDeviceToDevice));
1540:         PetscCallCUDA(cudaMemset(d_RR,0,sizeof(PetscComplex)*n2));
1541:         PetscCall(shift_Cdiagonal(n,d_Maux,n,-PetscRealPartComplex(p[ipsize-1]),-PetscImaginaryPartComplex(p[ipsize-1])));
1542:         PetscCall(set_Cdiagonal(n,d_RR,n,PetscRealPartComplex(r[irsize-1]),PetscImaginaryPartComplex(r[irsize-1])));
1543:         PetscCallMAGMA(magma_Cgesv_gpu,n,n,d_Maux,n,piv,d_RR,n);
1544:         PetscCallCUBLAS(cublasXCaxpy(cublasv2handle,n2,&cone,d_RR,one,d_expmA,one));
1545:         PetscCall(SlepcLogGpuFlopsComplex(1.0*n+(2.0*n*n*n/3.0+2.0*n*n*n)+1.0*n2));
1546:       }
1547:     } else { /* complex */
1548:       for (i=0;i<irsize;i++) { /* use partial fraction to get R(As) */
1549:         PetscCallCUDA(cudaMemcpy(d_Maux,d_As,sizeof(PetscComplex)*n2,cudaMemcpyDeviceToDevice));
1550:         PetscCallCUDA(cudaMemset(d_RR,0,sizeof(PetscComplex)*n2));
1551:         PetscCall(shift_Cdiagonal(n,d_Maux,n,-PetscRealPartComplex(p[i]),-PetscImaginaryPartComplex(p[i])));
1552:         PetscCall(set_Cdiagonal(n,d_RR,n,PetscRealPartComplex(r[i]),PetscImaginaryPartComplex(r[i])));
1553:         PetscCallMAGMA(magma_Cgesv_gpu,n,n,d_Maux,n,piv,d_RR,n);
1554:         PetscCallCUBLAS(cublasXCaxpy(cublasv2handle,n2,&cone,d_RR,one,d_expmA,one));
1555:         PetscCall(SlepcLogGpuFlopsComplex(1.0*n+(2.0*n*n*n/3.0+2.0*n*n*n)+1.0*n2));
1556:       }
1557:     }
1558:     for (i=0;i<iremainsize;i++) {
1559:       if (!i) {
1560:         PetscCallCUDA(cudaMemset(d_RR,0,sizeof(PetscComplex)*n2));
1561:         PetscCall(set_Cdiagonal(n,d_RR,n,PetscRealPartComplex(remainterm[iremainsize-1]),PetscImaginaryPartComplex(remainterm[iremainsize-1])));
1562:       } else {
1563:         PetscCallCUDA(cudaMemcpy(d_RR,d_As,sizeof(PetscComplex)*n2,cudaMemcpyDeviceToDevice));
1564:         for (j=1;j<i;j++) {
1565:           PetscCallCUBLAS(cublasXCgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n,n,n,&cone,d_RR,n,d_RR,n,&czero,d_Maux,n));
1566:           SlepcSwap(d_RR,d_Maux,aux);
1567:           PetscCall(SlepcLogGpuFlopsComplex(2.0*n*n*n));
1568:         }
1569:         PetscCallCUBLAS(cublasXCscal(cublasv2handle,n2,&remainterm[iremainsize-1-i],d_RR,one));
1570:         PetscCall(SlepcLogGpuFlopsComplex(1.0*n2));
1571:       }
1572:       PetscCallCUBLAS(cublasXCaxpy(cublasv2handle,n2,&cone,d_RR,one,d_expmA,one));
1573:       PetscCall(SlepcLogGpuFlopsComplex(1.0*n2));
1574:     }
1575:     PetscCall(PetscFree3(r,p,remainterm));
1576:   } else { /* product form, default */
1577:     PetscCall(getcoeffsproduct(k,m,&rsize,&psize,&mult,PETSC_TRUE));
1578:     PetscCall(PetscBLASIntCast((PetscInt)PetscRealPartComplex(rsize),&irsize));
1579:     PetscCall(PetscBLASIntCast((PetscInt)PetscRealPartComplex(psize),&ipsize));
1580:     PetscCall(PetscMalloc2(irsize,&rootp,ipsize,&rootq));
1581:     PetscCall(getcoeffsproduct(k,m,rootp,rootq,&mult,PETSC_FALSE));

1583:     PetscCallCUDA(cudaMemset(d_expmA,0,sizeof(PetscComplex)*n2));
1584:     PetscCall(set_Cdiagonal(n,d_expmA,n,rone,rzero)); /* initialize */
1585:     minlen = PetscMin(irsize,ipsize);
1586:     for (i=0;i<minlen;i++) {
1587:       PetscCallCUDA(cudaMemcpy(d_RR,d_As,sizeof(PetscComplex)*n2,cudaMemcpyDeviceToDevice));
1588:       PetscCall(shift_Cdiagonal(n,d_RR,n,-PetscRealPartComplex(rootp[i]),-PetscImaginaryPartComplex(rootp[i])));
1589:       PetscCallCUBLAS(cublasXCgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n,n,n,&cone,d_RR,n,d_expmA,n,&czero,d_Maux,n));
1590:       SlepcSwap(d_expmA,d_Maux,aux);
1591:       PetscCallCUDA(cudaMemcpy(d_RR,d_As,sizeof(PetscComplex)*n2,cudaMemcpyDeviceToDevice));
1592:       PetscCall(shift_Cdiagonal(n,d_RR,n,-PetscRealPartComplex(rootq[i]),-PetscImaginaryPartComplex(rootq[i])));
1593:       PetscCallMAGMA(magma_Cgesv_gpu,n,n,d_RR,n,piv,d_expmA,n);
1594:       /* shift(n) + gemm + shift(n) + gesv */
1595:       PetscCall(SlepcLogGpuFlopsComplex(1.0*n+(2.0*n*n*n)+1.0*n+(2.0*n*n*n/3.0+2.0*n*n*n)));
1596:     }
1597:     /* extra enumerator */
1598:     for (i=minlen;i<irsize;i++) {
1599:       PetscCallCUDA(cudaMemcpy(d_RR,d_As,sizeof(PetscComplex)*n2,cudaMemcpyDeviceToDevice));
1600:       PetscCall(shift_Cdiagonal(n,d_RR,n,-PetscRealPartComplex(rootp[i]),-PetscImaginaryPartComplex(rootp[i])));
1601:       PetscCallCUBLAS(cublasXCgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n,n,n,&cone,d_RR,n,d_expmA,n,&czero,d_Maux,n));
1602:       SlepcSwap(d_expmA,d_Maux,aux);
1603:       PetscCall(SlepcLogGpuFlopsComplex(1.0*n+2.0*n*n*n));
1604:     }
1605:     /* extra denominator */
1606:     for (i=minlen;i<ipsize;i++) {
1607:       PetscCallCUDA(cudaMemcpy(d_RR,d_As,sizeof(PetscComplex)*n2,cudaMemcpyDeviceToDevice));
1608:       PetscCall(shift_Cdiagonal(n,d_RR,n,-PetscRealPartComplex(rootq[i]),-PetscImaginaryPartComplex(rootq[i])));
1609:       PetscCallMAGMA(magma_Cgesv_gpu,n,n,d_RR,n,piv,d_expmA,n);
1610:       PetscCall(SlepcLogGpuFlopsComplex(1.0*n+(2.0*n*n*n/3.0+2.0*n*n*n)));
1611:     }
1612:     PetscCallCUBLAS(cublasXCscal(cublasv2handle,n2,&mult,d_expmA,one));
1613:     PetscCall(SlepcLogGpuFlopsComplex(1.0*n2));
1614:     PetscCall(PetscFree2(rootp,rootq));
1615:   }

1617: #if !defined(PETSC_USE_COMPLEX)
1618:   PetscCall(copy_array2D_C2S(n,n,d_Ba2,n,d_expmA,n));
1619: #else
1620:   PetscCallCUDA(cudaMemcpy(d_Ba2,d_expmA,sizeof(PetscScalar)*n2,cudaMemcpyDeviceToDevice));
1621: #endif

1623:   /* perform repeated squaring */
1624:   for (i=0;i<s;i++) { /* final squaring */
1625:     PetscCallCUBLAS(cublasXgemm(cublasv2handle,CUBLAS_OP_N,CUBLAS_OP_N,n,n,n,&sone,d_Ba2,n,d_Ba2,n,&szero,d_sMaux,n));
1626:     SlepcSwap(d_Ba2,d_sMaux,saux);
1627:     PetscCall(PetscLogGpuFlops(2.0*n*n*n));
1628:   }
1629:   if (d_Ba2!=d_Ba) {
1630:     PetscCallCUDA(cudaMemcpy(d_Ba,d_Ba2,sizeof(PetscScalar)*n2,cudaMemcpyDeviceToDevice));
1631:     d_sMaux = d_Ba2;
1632:   }
1633:   if (shift) {
1634:     expshift = PetscExpReal(shift);
1635:     PetscCallCUBLAS(cublasXscal(cublasv2handle,n2,&expshift,d_Ba,one));
1636:     PetscCall(PetscLogGpuFlops(1.0*n2));
1637:   }

1639:   PetscCall(PetscLogGpuTimeEnd());

1641:   /* restore pointers */
1642:   d_Maux = d_Maux2; d_expmA = d_expmA2; d_RR = d_RR2;
1643:   PetscCall(MatDenseCUDARestoreArrayWrite(B,&d_Ba));
1644:   PetscCallCUDA(cudaFree(d_isreal));
1645:   PetscCallCUDA(cudaFree(d_sMaux));
1646:   PetscCallCUDA(cudaFree(d_Maux));
1647:   PetscCallCUDA(cudaFree(d_expmA));
1648:   PetscCallCUDA(cudaFree(d_As));
1649:   PetscCallCUDA(cudaFree(d_RR));
1650:   PetscCall(PetscFree(piv));
1651:   PetscFunctionReturn(PETSC_SUCCESS);
1652: }
1653: #endif /* PETSC_HAVE_MAGMA */
1654: #endif /* PETSC_HAVE_CUDA */

1656: static PetscErrorCode FNView_Exp(FN fn,PetscViewer viewer)
1657: {
1658:   PetscBool      isascii;
1659:   char           str[50];
1660:   const char     *methodname[] = {
1661:                   "scaling & squaring, [m/m] Pade approximant (Higham)",
1662:                   "scaling & squaring, [6/6] Pade approximant",
1663:                   "scaling & squaring, subdiagonal Pade approximant (product form)",
1664:                   "scaling & squaring, subdiagonal Pade approximant (partial fraction)"
1665:   };
1666:   const int      nmeth=PETSC_STATIC_ARRAY_LENGTH(methodname);

1668:   PetscFunctionBegin;
1669:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii));
1670:   if (isascii) {
1671:     if (fn->beta==(PetscScalar)1.0) {
1672:       if (fn->alpha==(PetscScalar)1.0) PetscCall(PetscViewerASCIIPrintf(viewer,"  exponential: exp(x)\n"));
1673:       else {
1674:         PetscCall(SlepcSNPrintfScalar(str,sizeof(str),fn->alpha,PETSC_TRUE));
1675:         PetscCall(PetscViewerASCIIPrintf(viewer,"  exponential: exp(%s*x)\n",str));
1676:       }
1677:     } else {
1678:       PetscCall(SlepcSNPrintfScalar(str,sizeof(str),fn->beta,PETSC_TRUE));
1679:       if (fn->alpha==(PetscScalar)1.0) PetscCall(PetscViewerASCIIPrintf(viewer,"  exponential: %s*exp(x)\n",str));
1680:       else {
1681:         PetscCall(PetscViewerASCIIPrintf(viewer,"  exponential: %s",str));
1682:         PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_FALSE));
1683:         PetscCall(SlepcSNPrintfScalar(str,sizeof(str),fn->alpha,PETSC_TRUE));
1684:         PetscCall(PetscViewerASCIIPrintf(viewer,"*exp(%s*x)\n",str));
1685:         PetscCall(PetscViewerASCIIUseTabs(viewer,PETSC_TRUE));
1686:       }
1687:     }
1688:     if (fn->method<nmeth) PetscCall(PetscViewerASCIIPrintf(viewer,"  computing matrix functions with: %s\n",methodname[fn->method]));
1689:   }
1690:   PetscFunctionReturn(PETSC_SUCCESS);
1691: }

1693: SLEPC_EXTERN PetscErrorCode FNCreate_Exp(FN fn)
1694: {
1695:   PetscFunctionBegin;
1696:   fn->ops->evaluatefunction       = FNEvaluateFunction_Exp;
1697:   fn->ops->evaluatederivative     = FNEvaluateDerivative_Exp;
1698:   fn->ops->evaluatefunctionmat[0] = FNEvaluateFunctionMat_Exp_Higham;
1699:   fn->ops->evaluatefunctionmat[1] = FNEvaluateFunctionMat_Exp_Pade;
1700:   fn->ops->evaluatefunctionmat[2] = FNEvaluateFunctionMat_Exp_GuettelNakatsukasa; /* product form */
1701:   fn->ops->evaluatefunctionmat[3] = FNEvaluateFunctionMat_Exp_GuettelNakatsukasa; /* partial fraction */
1702: #if defined(PETSC_HAVE_CUDA)
1703:   fn->ops->evaluatefunctionmatcuda[1] = FNEvaluateFunctionMat_Exp_Pade_CUDA;
1704: #if defined(PETSC_HAVE_MAGMA)
1705:   fn->ops->evaluatefunctionmatcuda[0] = FNEvaluateFunctionMat_Exp_Higham_CUDAm;
1706:   fn->ops->evaluatefunctionmatcuda[1] = FNEvaluateFunctionMat_Exp_Pade_CUDAm;
1707:   fn->ops->evaluatefunctionmatcuda[2] = FNEvaluateFunctionMat_Exp_GuettelNakatsukasa_CUDAm; /* product form */
1708:   fn->ops->evaluatefunctionmatcuda[3] = FNEvaluateFunctionMat_Exp_GuettelNakatsukasa_CUDAm; /* partial fraction */
1709: #endif
1710: #endif
1711:   fn->ops->view                   = FNView_Exp;
1712:   PetscFunctionReturn(PETSC_SUCCESS);
1713: }