Actual source code: hz.c
slepc-3.22.2 2024-12-02
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
10: /*
11: HZ iteration for generalized symmetric-indefinite eigenproblem.
12: Based on Matlab code from David Watkins.
14: References:
16: [1] D.S. Watkins, The Matrix Eigenvalue Problem: GR and Krylov Subspace
17: Methods, SIAM, 2007.
19: [2] M.A. Brebner, J. Grad, "Eigenvalues of Ax = lambda Bx for real
20: symmetric matrices A and B computed by reduction to pseudosymmetric
21: form and the HR process", Linear Alg. Appl. 43:99-118, 1982.
22: */
24: #include <slepc/private/dsimpl.h>
25: #include <slepcblaslapack.h>
27: /*
28: Sets up a 2-by-2 matrix to eliminate y in the vector [x y]'.
29: Transformation is rotator if sygn = 1 and hyperbolic if sygn = -1.
30: */
31: static PetscErrorCode UnifiedRotation(PetscReal x,PetscReal y,PetscReal sygn,PetscReal *rot,PetscReal *rcond,PetscBool *swap)
32: {
33: PetscReal nrm,c,s;
35: PetscFunctionBegin;
36: *swap = PETSC_FALSE;
37: if (y == 0) {
38: rot[0] = 1.0; rot[1] = 0.0; rot[2] = 0.0; rot[3] = 1.0;
39: *rcond = 1.0;
40: } else {
41: nrm = PetscMax(PetscAbs(x),PetscAbs(y));
42: c = x/nrm; s = y/nrm;
43: PetscCheck(sygn==1.0 || sygn==-1,PETSC_COMM_SELF,PETSC_ERR_PLIB,"Value of sygn sent to transetup must be 1 or -1");
44: if (sygn == 1.0) { /* set up a rotator */
45: nrm = SlepcAbs(c,s);
46: c = c/nrm; s = s/nrm;
47: /* rot = [c s; -s c]; */
48: rot[0] = c; rot[1] = -s; rot[2] = s; rot[3] = c;
49: *rcond = 1.0;
50: } else { /* sygn == -1, set up a hyperbolic transformation */
51: nrm = c*c-s*s;
52: if (nrm > 0) nrm = PetscSqrtReal(nrm);
53: else {
54: PetscCheck(nrm<0,PETSC_COMM_SELF,PETSC_ERR_PLIB,"Breakdown in construction of hyperbolic transformation");
55: nrm = PetscSqrtReal(-nrm);
56: *swap = PETSC_TRUE;
57: }
58: c = c/nrm; s = s/nrm;
59: /* rot = [c -s; -s c]; */
60: rot[0] = c; rot[1] = -s; rot[2] = -s; rot[3] = c;
61: *rcond = PetscAbs(PetscAbs(s)-PetscAbs(c))/(PetscAbs(s)+PetscAbs(c));
62: }
63: }
64: PetscFunctionReturn(PETSC_SUCCESS);
65: }
67: static PetscErrorCode HZStep(PetscBLASInt ntop,PetscBLASInt nn,PetscReal tr,PetscReal dt,PetscReal *aa,PetscReal *bb,PetscReal *dd,PetscScalar *uu,PetscInt n,PetscInt ld,PetscBool *flag)
68: {
69: PetscBLASInt one=1;
70: PetscInt k,jj,ii;
71: PetscBLASInt n_;
72: PetscReal bulge10,bulge20,bulge30,bulge31,bulge41,bulge42;
73: PetscReal sygn,rcond=1.0,worstcond,rot[4],buf[2],t;
74: PetscScalar rtmp;
75: PetscBool swap;
77: PetscFunctionBegin;
78: *flag = PETSC_FALSE;
79: worstcond = 1.0;
80: PetscCall(PetscBLASIntCast(n,&n_));
82: /* Build initial bulge that sets step in motion */
83: bulge10 = dd[ntop+1]*(aa[ntop]*(aa[ntop] - dd[ntop]*tr) + dt*dd[ntop]*dd[ntop]) + dd[ntop]*bb[ntop]*bb[ntop];
84: bulge20 = bb[ntop]*(dd[ntop+1]*aa[ntop] + dd[ntop]*aa[ntop+1] - dd[ntop]*dd[ntop+1]*tr);
85: bulge30 = bb[ntop]*bb[ntop+1]*dd[ntop];
86: bulge31 = 0.0;
87: bulge41 = 0.0;
88: bulge42 = 0.0;
90: /* Chase the bulge */
91: for (jj=ntop;jj<nn-1;jj++) {
93: /* Check for trivial bulge */
94: if (jj>ntop && PetscMax(PetscMax(PetscAbs(bulge10),PetscAbs(bulge20)),PetscAbs(bulge30))<PETSC_MACHINE_EPSILON*(PetscAbs(aa[jj]) + PetscAbs(aa[jj+1]))) {
95: bb[jj-1] = 0.0; /* deflate and move on */
97: } else { /* carry out the step */
99: /* Annihilate tip entry bulge30 */
100: if (bulge30 != 0.0) {
102: /* Make an interchange if necessary to ensure that the
103: first transformation is othogonal, not hyperbolic. */
104: if (dd[jj+1] != dd[jj+2]) { /* make an interchange */
105: if (dd[jj] != dd[jj+1]) { /* interchange 1st and 2nd */
106: buf[0] = bulge20; bulge20 = bulge10; bulge10 = buf[0];
107: buf[0] = aa[jj]; aa[jj] = aa[jj+1]; aa[jj+1] = buf[0];
108: buf[0] = bb[jj+1]; bb[jj+1] = bulge31; bulge31 = buf[0];
109: buf[0] = dd[jj]; dd[jj] = dd[jj+1]; dd[jj+1] = buf[0];
110: for (k=0;k<n;k++) {
111: rtmp = uu[k+jj*ld]; uu[k+jj*ld] = uu[k+(jj+1)*ld]; uu[k+(jj+1)*ld] = rtmp;
112: }
113: } else { /* interchange 1st and 3rd */
114: buf[0] = bulge30; bulge30 = bulge10; bulge10 = buf[0];
115: buf[0] = aa[jj]; aa[jj] = aa[jj+2]; aa[jj+2] = buf[0];
116: buf[0] = bb[jj]; bb[jj] = bb[jj+1]; bb[jj+1] = buf[0];
117: buf[0] = dd[jj]; dd[jj] = dd[jj+2]; dd[jj+2] = buf[0];
118: if (jj + 2 < nn-1) {
119: bulge41 = bb[jj+2];
120: bb[jj+2] = 0;
121: }
122: for (k=0;k<n;k++) {
123: rtmp = uu[k+jj*ld]; uu[k+jj*ld] = uu[k+(jj+2)*ld]; uu[k+(jj+2)*ld] = rtmp;
124: }
125: }
126: }
128: /* Set up transforming matrix rot. */
129: PetscCall(UnifiedRotation(bulge20,bulge30,1,rot,&rcond,&swap));
131: /* Apply transforming matrix rot to T. */
132: bulge20 = rot[0]*bulge20 + rot[2]*bulge30;
133: buf[0] = rot[0]*bb[jj] + rot[2]*bulge31;
134: buf[1] = rot[1]*bb[jj] + rot[3]*bulge31;
135: bb[jj] = buf[0];
136: bulge31 = buf[1];
137: buf[0] = rot[0]*rot[0]*aa[jj+1] + 2.0*rot[0]*rot[2]*bb[jj+1] + rot[2]*rot[2]*aa[jj+2];
138: buf[1] = rot[1]*rot[1]*aa[jj+1] + 2.0*rot[3]*rot[1]*bb[jj+1] + rot[3]*rot[3]*aa[jj+2];
139: bb[jj+1] = rot[1]*rot[0]*aa[jj+1] + rot[3]*rot[2]*aa[jj+2] + (rot[3]*rot[0] + rot[1]*rot[2])*bb[jj+1];
140: aa[jj+1] = buf[0];
141: aa[jj+2] = buf[1];
142: if (jj + 2 < nn-1) {
143: bulge42 = bb[jj+2]*rot[2];
144: bb[jj+2] = bb[jj+2]*rot[3];
145: }
147: /* Accumulate transforming matrix */
148: PetscCallBLAS("BLASrot",BLASMIXEDrot_(&n_,uu+(jj+1)*ld,&one,uu+(jj+2)*ld,&one,&rot[0],&rot[2]));
149: }
151: /* Annihilate inner entry bulge20 */
152: if (bulge20 != 0.0) {
154: /* Begin by setting up transforming matrix rot */
155: sygn = dd[jj]*dd[jj+1];
156: PetscCall(UnifiedRotation(bulge10,bulge20,sygn,rot,&rcond,&swap));
157: if (rcond<PETSC_MACHINE_EPSILON) {
158: *flag = PETSC_TRUE;
159: PetscFunctionReturn(PETSC_SUCCESS);
160: }
161: if (rcond < worstcond) worstcond = rcond;
163: /* Apply transforming matrix rot to T */
164: if (jj > ntop) bb[jj-1] = rot[0]*bulge10 + rot[2]*bulge20;
165: buf[0] = rot[0]*rot[0]*aa[jj] + 2*rot[0]*rot[2]*bb[jj] + rot[2]*rot[2]*aa[jj+1];
166: buf[1] = rot[1]*rot[1]*aa[jj] + 2*rot[3]*rot[1]*bb[jj] + rot[3]*rot[3]*aa[jj+1];
167: bb[jj] = rot[1]*rot[0]*aa[jj] + rot[3]*rot[2]*aa[jj+1] + (rot[3]*rot[0] + rot[1]*rot[2])*bb[jj];
168: aa[jj] = buf[0];
169: aa[jj+1] = buf[1];
170: if (jj + 1 < nn-1) {
171: /* buf = [ bulge31 bb(jj+1) ] * rot' */
172: buf[0] = rot[0]*bulge31 + rot[2]*bb[jj+1];
173: buf[1] = rot[1]*bulge31 + rot[3]*bb[jj+1];
174: bulge31 = buf[0];
175: bb[jj+1] = buf[1];
176: }
177: if (jj + 2 < nn-1) {
178: /* buf = [bulge41 bulge42] * rot' */
179: buf[0] = rot[0]*bulge41 + rot[2]*bulge42;
180: buf[1] = rot[1]*bulge41 + rot[3]*bulge42;
181: bulge41 = buf[0];
182: bulge42 = buf[1];
183: }
185: /* Apply transforming matrix rot to D */
186: if (swap == 1) {
187: buf[0] = dd[jj]; dd[jj] = dd[jj+1]; dd[jj+1] = buf[0];
188: }
190: /* Accumulate transforming matrix, uu(jj:jj+1,:) = rot*uu(jj:jj+1,:) */
191: if (sygn==1) {
192: PetscCallBLAS("BLASrot",BLASMIXEDrot_(&n_,uu+jj*ld,&one,uu+(jj+1)*ld,&one,&rot[0],&rot[2]));
193: } else {
194: if (PetscAbsReal(rot[0])>PetscAbsReal(rot[1])) { /* Type I */
195: t = rot[1]/rot[0];
196: for (ii=0;ii<n;ii++) {
197: uu[jj*ld+ii] = rot[0]*uu[jj*ld+ii] + rot[1]*uu[(jj+1)*ld+ii];
198: uu[(jj+1)*ld+ii] = t*uu[jj*ld+ii] + uu[(jj+1)*ld+ii]/rot[0];
199: }
200: } else { /* Type II */
201: t = rot[0]/rot[1];
202: for (ii=0;ii<n;ii++) {
203: rtmp = uu[jj*ld+ii];
204: uu[jj*ld+ii] = rot[0]*uu[jj*ld+ii] + rot[1]*uu[(jj+1)*ld+ii];
205: uu[(jj+1)*ld+ii] = t*uu[jj*ld+ii] + rtmp/rot[1];
206: }
207: }
208: }
209: }
210: }
212: /* Adjust bulge for next step */
213: bulge10 = bb[jj];
214: bulge20 = bulge31;
215: bulge30 = bulge41;
216: bulge31 = bulge42;
217: bulge41 = 0.0;
218: bulge42 = 0.0;
219: }
220: PetscFunctionReturn(PETSC_SUCCESS);
221: }
223: static PetscErrorCode HZIteration(PetscBLASInt nn,PetscBLASInt cgd,PetscReal *aa,PetscReal *bb,PetscReal *dd,PetscScalar *uu,PetscBLASInt ld)
224: {
225: PetscBLASInt j2,one=1,its,nits,nstop,jj,ntop,nbot,ntry;
226: PetscReal htr,det,dis,dif,tn,kt,c,s,tr,dt;
227: PetscBool flag=PETSC_FALSE;
229: PetscFunctionBegin;
230: its = 0;
231: nbot = nn-1;
232: nits = 0;
233: nstop = 40*(nn - cgd);
235: while (nbot >= cgd && nits < nstop) {
237: /* Check for zeros on the subdiagonal */
238: jj = nbot - 1;
239: while (jj>=cgd && PetscAbs(bb[jj])>PETSC_MACHINE_EPSILON*(PetscAbs(aa[jj])+PetscAbs(aa[jj+1]))) jj = jj-1;
240: if (jj>=cgd) bb[jj]=0;
241: ntop = jj + 1; /* starting point for step */
242: if (ntop == nbot) { /* isolate single eigenvalue */
243: nbot = ntop - 1;
244: its = 0;
245: } else if (ntop+1 == nbot) { /* isolate pair of eigenvalues */
246: htr = 0.5*(aa[ntop]*dd[ntop] + aa[nbot]*dd[nbot]);
247: det = dd[ntop]*dd[nbot]*(aa[ntop]*aa[nbot]-bb[ntop]*bb[ntop]);
248: dis = htr*htr - det;
249: if (dis > 0) { /* distinct real eigenvalues */
250: if (dd[ntop] == dd[nbot]) { /* separate the eigenvalues by a Jacobi rotator */
251: dif = aa[ntop]-aa[nbot];
252: if (2.0*PetscAbs(bb[ntop])<=dif) {
253: tn = 2*bb[ntop]/dif;
254: tn = tn/(1.0 + PetscSqrtReal(1.0+tn*tn));
255: } else {
256: kt = dif/(2.0*bb[ntop]);
257: tn = PetscSign(kt)/(PetscAbsReal(kt)+PetscSqrtReal(1.0+kt*kt));
258: }
259: c = 1.0/PetscSqrtReal(1.0 + tn*tn);
260: s = c*tn;
261: aa[ntop] = aa[ntop] + tn*bb[ntop];
262: aa[nbot] = aa[nbot] - tn*bb[ntop];
263: bb[ntop] = 0;
264: j2 = nn-cgd;
265: PetscCallBLAS("BLASrot",BLASMIXEDrot_(&j2,uu+ntop*ld+cgd,&one,uu+nbot*ld+cgd,&one,&c,&s));
266: }
267: }
268: nbot = ntop - 1;
269: } else { /* Do an HZ iteration */
270: its = its + 1;
271: nits = nits + 1;
272: tr = aa[nbot-1]*dd[nbot-1] + aa[nbot]*dd[nbot];
273: dt = dd[nbot-1]*dd[nbot]*(aa[nbot-1]*aa[nbot]-bb[nbot-1]*bb[nbot-1]);
274: for (ntry=1;ntry<=6;ntry++) {
275: PetscCall(HZStep(ntop,nbot+1,tr,dt,aa,bb,dd,uu,nn,ld,&flag));
276: if (!flag) break;
277: PetscCheck(ntry<6,PETSC_COMM_SELF,PETSC_ERR_CONV_FAILED,"Unable to complete hz step after six tries");
278: tr = 0.9*tr; dt = 0.81*dt;
279: }
280: }
281: }
282: PetscFunctionReturn(PETSC_SUCCESS);
283: }
285: PetscErrorCode DSSolve_GHIEP_HZ(DS ds,PetscScalar *wr,PetscScalar *wi)
286: {
287: PetscInt i,off;
288: PetscBLASInt n,l,n1,ld = 0;
289: const PetscScalar *A,*B;
290: PetscScalar *Q;
291: PetscReal *d,*e,*s;
293: PetscFunctionBegin;
294: #if !defined(PETSC_USE_COMPLEX)
295: PetscAssertPointer(wi,3);
296: #endif
297: PetscCall(PetscBLASIntCast(ds->ld,&ld));
298: PetscCall(PetscBLASIntCast(ds->n-ds->l,&n1));
299: off = ds->l + ds->l*ld;
300: PetscCall(DSGetArrayReal(ds,DS_MAT_T,&d));
301: PetscCall(DSGetArrayReal(ds,DS_MAT_D,&s));
302: e = d + ld;
303: #if defined(PETSC_USE_DEBUG)
304: /* Check signature */
305: PetscCall(MatDenseGetArrayRead(ds->omat[DS_MAT_B],&B));
306: for (i=0;i<ds->n;i++) {
307: PetscReal de = (ds->compact)?s[i]:PetscRealPart(B[i*ld+i]);
308: PetscCheck(de==1.0 || de==-1.0,PETSC_COMM_SELF,PETSC_ERR_PLIB,"Diagonal elements of the signature matrix must be 1 or -1");
309: }
310: PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_B],&B));
311: #endif
312: /* Quick return */
313: if (n1 == 1) {
314: PetscCall(MatDenseGetArray(ds->omat[DS_MAT_Q],&Q));
315: for (i=0;i<=ds->l;i++) Q[i+i*ld] = 1.0;
316: PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_Q],&Q));
317: PetscCall(DSGHIEPComplexEigs(ds,0,ds->l,wr,wi));
318: if (ds->compact) {
319: wr[ds->l] = d[ds->l]/s[ds->l]; wi[ds->l] = 0.0;
320: } else {
321: PetscCall(MatDenseGetArrayRead(ds->omat[DS_MAT_A],&A));
322: PetscCall(MatDenseGetArrayRead(ds->omat[DS_MAT_B],&B));
323: d[ds->l] = PetscRealPart(A[off]);
324: s[ds->l] = PetscRealPart(B[off]);
325: PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_A],&A));
326: PetscCall(MatDenseRestoreArrayRead(ds->omat[DS_MAT_B],&B));
327: wr[ds->l] = d[ds->l]/s[ds->l]; wi[ds->l] = 0.0;
328: }
329: PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&d));
330: PetscCall(DSRestoreArrayReal(ds,DS_MAT_D,&s));
331: PetscFunctionReturn(PETSC_SUCCESS);
332: }
333: /* Reduce to pseudotriadiagonal form */
334: PetscCall(DSIntermediate_GHIEP(ds));
335: PetscCall(MatDenseGetArray(ds->omat[DS_MAT_Q],&Q));
336: PetscCall(PetscBLASIntCast(ds->n,&n));
337: PetscCall(PetscBLASIntCast(ds->l,&l));
338: PetscCall(HZIteration(n,l,d,e,s,Q,ld));
339: PetscCall(MatDenseRestoreArray(ds->omat[DS_MAT_Q],&Q));
340: PetscCall(DSRestoreArrayReal(ds,DS_MAT_T,&d));
341: PetscCall(DSRestoreArrayReal(ds,DS_MAT_D,&s));
342: if (!ds->compact) PetscCall(DSSwitchFormat_GHIEP(ds,PETSC_FALSE));
343: /* Undo from diagonal the blocks with real eigenvalues*/
344: PetscCall(DSGHIEPRealBlocks(ds));
346: /* Recover eigenvalues from diagonal */
347: PetscCall(DSGHIEPComplexEigs(ds,0,ds->n,wr,wi));
348: #if defined(PETSC_USE_COMPLEX)
349: if (wi) {
350: for (i=ds->l;i<ds->n;i++) wi[i] = 0.0;
351: }
352: #endif
353: ds->t = ds->n;
354: PetscFunctionReturn(PETSC_SUCCESS);
355: }