Actual source code: cyclic.c

slepc-3.21.1 2024-04-26
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    SLEPc singular value solver: "cyclic"

 13:    Method: Uses a Hermitian eigensolver for H(A) = [ 0  A ; A^T 0 ]
 14: */

 16: #include <slepc/private/svdimpl.h>
 17: #include <slepc/private/bvimpl.h>
 18: #include "cyclic.h"

 20: static PetscErrorCode MatMult_Cyclic(Mat B,Vec x,Vec y)
 21: {
 22:   SVD_CYCLIC_SHELL  *ctx;
 23:   const PetscScalar *px;
 24:   PetscScalar       *py;
 25:   PetscInt          m;

 27:   PetscFunctionBegin;
 28:   PetscCall(MatShellGetContext(B,&ctx));
 29:   PetscCall(MatGetLocalSize(ctx->A,&m,NULL));
 30:   PetscCall(VecGetArrayRead(x,&px));
 31:   PetscCall(VecGetArrayWrite(y,&py));
 32:   PetscCall(VecPlaceArray(ctx->x1,px));
 33:   PetscCall(VecPlaceArray(ctx->x2,px+m));
 34:   PetscCall(VecPlaceArray(ctx->y1,py));
 35:   PetscCall(VecPlaceArray(ctx->y2,py+m));
 36:   PetscCall(MatMult(ctx->A,ctx->x2,ctx->y1));
 37:   PetscCall(MatMult(ctx->AT,ctx->x1,ctx->y2));
 38:   PetscCall(VecResetArray(ctx->x1));
 39:   PetscCall(VecResetArray(ctx->x2));
 40:   PetscCall(VecResetArray(ctx->y1));
 41:   PetscCall(VecResetArray(ctx->y2));
 42:   PetscCall(VecRestoreArrayRead(x,&px));
 43:   PetscCall(VecRestoreArrayWrite(y,&py));
 44:   PetscFunctionReturn(PETSC_SUCCESS);
 45: }

 47: static PetscErrorCode MatGetDiagonal_Cyclic(Mat B,Vec diag)
 48: {
 49:   PetscFunctionBegin;
 50:   PetscCall(VecSet(diag,0.0));
 51:   PetscFunctionReturn(PETSC_SUCCESS);
 52: }

 54: static PetscErrorCode MatDestroy_Cyclic(Mat B)
 55: {
 56:   SVD_CYCLIC_SHELL *ctx;

 58:   PetscFunctionBegin;
 59:   PetscCall(MatShellGetContext(B,&ctx));
 60:   PetscCall(VecDestroy(&ctx->x1));
 61:   PetscCall(VecDestroy(&ctx->x2));
 62:   PetscCall(VecDestroy(&ctx->y1));
 63:   PetscCall(VecDestroy(&ctx->y2));
 64:   if (ctx->misaligned) {
 65:     PetscCall(VecDestroy(&ctx->wx2));
 66:     PetscCall(VecDestroy(&ctx->wy2));
 67:   }
 68:   PetscCall(PetscFree(ctx));
 69:   PetscFunctionReturn(PETSC_SUCCESS);
 70: }

 72: /*
 73:    Builds cyclic matrix   C = | 0   A |
 74:                               | AT  0 |
 75: */
 76: static PetscErrorCode SVDCyclicGetCyclicMat(SVD svd,Mat A,Mat AT,Mat *C)
 77: {
 78:   SVD_CYCLIC       *cyclic = (SVD_CYCLIC*)svd->data;
 79:   SVD_CYCLIC_SHELL *ctx;
 80:   PetscInt         i,M,N,m,n,Istart,Iend;
 81:   VecType          vtype;
 82:   Mat              Zm,Zn;
 83: #if defined(PETSC_HAVE_CUDA)
 84:   PetscBool        cuda;
 85:   const PetscInt   *ranges;
 86:   PetscMPIInt      size;
 87: #endif

 89:   PetscFunctionBegin;
 90:   PetscCall(MatGetSize(A,&M,&N));
 91:   PetscCall(MatGetLocalSize(A,&m,&n));

 93:   if (cyclic->explicitmatrix) {
 94:     PetscCheck(svd->expltrans,PetscObjectComm((PetscObject)svd),PETSC_ERR_SUP,"Cannot use explicit cyclic matrix with implicit transpose");
 95:     PetscCall(MatCreate(PetscObjectComm((PetscObject)svd),&Zm));
 96:     PetscCall(MatSetSizes(Zm,m,m,M,M));
 97:     PetscCall(MatSetFromOptions(Zm));
 98:     PetscCall(MatGetOwnershipRange(Zm,&Istart,&Iend));
 99:     for (i=Istart;i<Iend;i++) PetscCall(MatSetValue(Zm,i,i,0.0,INSERT_VALUES));
100:     PetscCall(MatAssemblyBegin(Zm,MAT_FINAL_ASSEMBLY));
101:     PetscCall(MatAssemblyEnd(Zm,MAT_FINAL_ASSEMBLY));
102:     PetscCall(MatCreate(PetscObjectComm((PetscObject)svd),&Zn));
103:     PetscCall(MatSetSizes(Zn,n,n,N,N));
104:     PetscCall(MatSetFromOptions(Zn));
105:     PetscCall(MatGetOwnershipRange(Zn,&Istart,&Iend));
106:     for (i=Istart;i<Iend;i++) PetscCall(MatSetValue(Zn,i,i,0.0,INSERT_VALUES));
107:     PetscCall(MatAssemblyBegin(Zn,MAT_FINAL_ASSEMBLY));
108:     PetscCall(MatAssemblyEnd(Zn,MAT_FINAL_ASSEMBLY));
109:     PetscCall(MatCreateTile(1.0,Zm,1.0,A,1.0,AT,1.0,Zn,C));
110:     PetscCall(MatDestroy(&Zm));
111:     PetscCall(MatDestroy(&Zn));
112:   } else {
113:     PetscCall(PetscNew(&ctx));
114:     ctx->A       = A;
115:     ctx->AT      = AT;
116:     ctx->swapped = svd->swapped;
117:     PetscCall(MatCreateVecsEmpty(A,&ctx->x2,&ctx->x1));
118:     PetscCall(MatCreateVecsEmpty(A,&ctx->y2,&ctx->y1));
119:     PetscCall(MatCreateShell(PetscObjectComm((PetscObject)svd),m+n,m+n,M+N,M+N,ctx,C));
120:     PetscCall(MatShellSetOperation(*C,MATOP_GET_DIAGONAL,(void(*)(void))MatGetDiagonal_Cyclic));
121:     PetscCall(MatShellSetOperation(*C,MATOP_DESTROY,(void(*)(void))MatDestroy_Cyclic));
122: #if defined(PETSC_HAVE_CUDA)
123:     PetscCall(PetscObjectTypeCompareAny((PetscObject)(svd->swapped?AT:A),&cuda,MATSEQAIJCUSPARSE,MATMPIAIJCUSPARSE,""));
124:     if (cuda) PetscCall(MatShellSetOperation(*C,MATOP_MULT,(void(*)(void))MatMult_Cyclic_CUDA));
125:     else
126: #endif
127:       PetscCall(MatShellSetOperation(*C,MATOP_MULT,(void(*)(void))MatMult_Cyclic));
128:     PetscCall(MatGetVecType(A,&vtype));
129:     PetscCall(MatSetVecType(*C,vtype));
130: #if defined(PETSC_HAVE_CUDA)
131:     if (cuda) {
132:       /* check alignment of bottom block */
133:       PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)ctx->x1),&size));
134:       PetscCall(VecGetOwnershipRanges(ctx->x1,&ranges));
135:       for (i=0;i<size;i++) {
136:         ctx->misaligned = (((ranges[i+1]-ranges[i])*sizeof(PetscScalar))%16)? PETSC_TRUE: PETSC_FALSE;
137:         if (ctx->misaligned) break;
138:       }
139:       if (ctx->misaligned) {  /* create work vectors for MatMult */
140:         PetscCall(VecDuplicate(ctx->x2,&ctx->wx2));
141:         PetscCall(VecDuplicate(ctx->y2,&ctx->wy2));
142:       }
143:     }
144: #endif
145:   }
146:   PetscFunctionReturn(PETSC_SUCCESS);
147: }

149: static PetscErrorCode MatMult_ECross(Mat B,Vec x,Vec y)
150: {
151:   SVD_CYCLIC_SHELL  *ctx;
152:   const PetscScalar *px;
153:   PetscScalar       *py;
154:   PetscInt          mn,m,n;

156:   PetscFunctionBegin;
157:   PetscCall(MatShellGetContext(B,&ctx));
158:   PetscCall(MatGetLocalSize(ctx->A,NULL,&n));
159:   PetscCall(VecGetLocalSize(y,&mn));
160:   m = mn-n;
161:   PetscCall(VecGetArrayRead(x,&px));
162:   PetscCall(VecGetArrayWrite(y,&py));
163:   PetscCall(VecPlaceArray(ctx->x1,px));
164:   PetscCall(VecPlaceArray(ctx->x2,px+m));
165:   PetscCall(VecPlaceArray(ctx->y1,py));
166:   PetscCall(VecPlaceArray(ctx->y2,py+m));
167:   PetscCall(VecCopy(ctx->x1,ctx->y1));
168:   PetscCall(MatMult(ctx->A,ctx->x2,ctx->w));
169:   PetscCall(MatMult(ctx->AT,ctx->w,ctx->y2));
170:   PetscCall(VecResetArray(ctx->x1));
171:   PetscCall(VecResetArray(ctx->x2));
172:   PetscCall(VecResetArray(ctx->y1));
173:   PetscCall(VecResetArray(ctx->y2));
174:   PetscCall(VecRestoreArrayRead(x,&px));
175:   PetscCall(VecRestoreArrayWrite(y,&py));
176:   PetscFunctionReturn(PETSC_SUCCESS);
177: }

179: static PetscErrorCode MatGetDiagonal_ECross(Mat B,Vec d)
180: {
181:   SVD_CYCLIC_SHELL  *ctx;
182:   PetscScalar       *pd;
183:   PetscMPIInt       len;
184:   PetscInt          mn,m,n,N,i,j,start,end,ncols;
185:   PetscScalar       *work1,*work2,*diag;
186:   const PetscInt    *cols;
187:   const PetscScalar *vals;

189:   PetscFunctionBegin;
190:   PetscCall(MatShellGetContext(B,&ctx));
191:   PetscCall(MatGetLocalSize(ctx->A,NULL,&n));
192:   PetscCall(VecGetLocalSize(d,&mn));
193:   m = mn-n;
194:   PetscCall(VecGetArrayWrite(d,&pd));
195:   PetscCall(VecPlaceArray(ctx->y1,pd));
196:   PetscCall(VecSet(ctx->y1,1.0));
197:   PetscCall(VecResetArray(ctx->y1));
198:   PetscCall(VecPlaceArray(ctx->y2,pd+m));
199:   if (!ctx->diag) {
200:     /* compute diagonal from rows and store in ctx->diag */
201:     PetscCall(VecDuplicate(ctx->y2,&ctx->diag));
202:     PetscCall(MatGetSize(ctx->A,NULL,&N));
203:     PetscCall(PetscCalloc2(N,&work1,N,&work2));
204:     if (ctx->swapped) {
205:       PetscCall(MatGetOwnershipRange(ctx->AT,&start,&end));
206:       for (i=start;i<end;i++) {
207:         PetscCall(MatGetRow(ctx->AT,i,&ncols,NULL,&vals));
208:         for (j=0;j<ncols;j++) work1[i] += vals[j]*vals[j];
209:         PetscCall(MatRestoreRow(ctx->AT,i,&ncols,NULL,&vals));
210:       }
211:     } else {
212:       PetscCall(MatGetOwnershipRange(ctx->A,&start,&end));
213:       for (i=start;i<end;i++) {
214:         PetscCall(MatGetRow(ctx->A,i,&ncols,&cols,&vals));
215:         for (j=0;j<ncols;j++) work1[cols[j]] += vals[j]*vals[j];
216:         PetscCall(MatRestoreRow(ctx->A,i,&ncols,&cols,&vals));
217:       }
218:     }
219:     PetscCall(PetscMPIIntCast(N,&len));
220:     PetscCall(MPIU_Allreduce(work1,work2,len,MPIU_SCALAR,MPIU_SUM,PetscObjectComm((PetscObject)B)));
221:     PetscCall(VecGetOwnershipRange(ctx->diag,&start,&end));
222:     PetscCall(VecGetArrayWrite(ctx->diag,&diag));
223:     for (i=start;i<end;i++) diag[i-start] = work2[i];
224:     PetscCall(VecRestoreArrayWrite(ctx->diag,&diag));
225:     PetscCall(PetscFree2(work1,work2));
226:   }
227:   PetscCall(VecCopy(ctx->diag,ctx->y2));
228:   PetscCall(VecResetArray(ctx->y2));
229:   PetscCall(VecRestoreArrayWrite(d,&pd));
230:   PetscFunctionReturn(PETSC_SUCCESS);
231: }

233: static PetscErrorCode MatDestroy_ECross(Mat B)
234: {
235:   SVD_CYCLIC_SHELL *ctx;

237:   PetscFunctionBegin;
238:   PetscCall(MatShellGetContext(B,&ctx));
239:   PetscCall(VecDestroy(&ctx->x1));
240:   PetscCall(VecDestroy(&ctx->x2));
241:   PetscCall(VecDestroy(&ctx->y1));
242:   PetscCall(VecDestroy(&ctx->y2));
243:   PetscCall(VecDestroy(&ctx->diag));
244:   PetscCall(VecDestroy(&ctx->w));
245:   if (ctx->misaligned) {
246:     PetscCall(VecDestroy(&ctx->wx2));
247:     PetscCall(VecDestroy(&ctx->wy2));
248:   }
249:   PetscCall(PetscFree(ctx));
250:   PetscFunctionReturn(PETSC_SUCCESS);
251: }

253: /*
254:    Builds extended cross product matrix   C = | I_m   0  |
255:                                               |  0  AT*A |
256:    t is an auxiliary Vec used to take the dimensions of the upper block
257: */
258: static PetscErrorCode SVDCyclicGetECrossMat(SVD svd,Mat A,Mat AT,Mat *C,Vec t)
259: {
260:   SVD_CYCLIC       *cyclic = (SVD_CYCLIC*)svd->data;
261:   SVD_CYCLIC_SHELL *ctx;
262:   PetscInt         i,M,N,m,n,Istart,Iend;
263:   VecType          vtype;
264:   Mat              Id,Zm,Zn,ATA;
265: #if defined(PETSC_HAVE_CUDA)
266:   PetscBool        cuda;
267:   const PetscInt   *ranges;
268:   PetscMPIInt      size;
269: #endif

271:   PetscFunctionBegin;
272:   PetscCall(MatGetSize(A,NULL,&N));
273:   PetscCall(MatGetLocalSize(A,NULL,&n));
274:   PetscCall(VecGetSize(t,&M));
275:   PetscCall(VecGetLocalSize(t,&m));

277:   if (cyclic->explicitmatrix) {
278:     PetscCheck(svd->expltrans,PetscObjectComm((PetscObject)svd),PETSC_ERR_SUP,"Cannot use explicit cyclic matrix with implicit transpose");
279:     PetscCall(MatCreateConstantDiagonal(PetscObjectComm((PetscObject)svd),m,m,M,M,1.0,&Id));
280:     PetscCall(MatCreate(PetscObjectComm((PetscObject)svd),&Zm));
281:     PetscCall(MatSetSizes(Zm,m,n,M,N));
282:     PetscCall(MatSetFromOptions(Zm));
283:     PetscCall(MatGetOwnershipRange(Zm,&Istart,&Iend));
284:     for (i=Istart;i<Iend;i++) {
285:       if (i<N) PetscCall(MatSetValue(Zm,i,i,0.0,INSERT_VALUES));
286:     }
287:     PetscCall(MatAssemblyBegin(Zm,MAT_FINAL_ASSEMBLY));
288:     PetscCall(MatAssemblyEnd(Zm,MAT_FINAL_ASSEMBLY));
289:     PetscCall(MatCreate(PetscObjectComm((PetscObject)svd),&Zn));
290:     PetscCall(MatSetSizes(Zn,n,m,N,M));
291:     PetscCall(MatSetFromOptions(Zn));
292:     PetscCall(MatGetOwnershipRange(Zn,&Istart,&Iend));
293:     for (i=Istart;i<Iend;i++) {
294:       if (i<m) PetscCall(MatSetValue(Zn,i,i,0.0,INSERT_VALUES));
295:     }
296:     PetscCall(MatAssemblyBegin(Zn,MAT_FINAL_ASSEMBLY));
297:     PetscCall(MatAssemblyEnd(Zn,MAT_FINAL_ASSEMBLY));
298:     PetscCall(MatProductCreate(AT,A,NULL,&ATA));
299:     PetscCall(MatProductSetType(ATA,MATPRODUCT_AB));
300:     PetscCall(MatProductSetFromOptions(ATA));
301:     PetscCall(MatProductSymbolic(ATA));
302:     PetscCall(MatProductNumeric(ATA));
303:     PetscCall(MatCreateTile(1.0,Id,1.0,Zm,1.0,Zn,1.0,ATA,C));
304:     PetscCall(MatDestroy(&Id));
305:     PetscCall(MatDestroy(&Zm));
306:     PetscCall(MatDestroy(&Zn));
307:     PetscCall(MatDestroy(&ATA));
308:   } else {
309:     PetscCall(PetscNew(&ctx));
310:     ctx->A       = A;
311:     ctx->AT      = AT;
312:     ctx->swapped = svd->swapped;
313:     PetscCall(VecDuplicateEmpty(t,&ctx->x1));
314:     PetscCall(VecDuplicateEmpty(t,&ctx->y1));
315:     PetscCall(MatCreateVecsEmpty(A,&ctx->x2,NULL));
316:     PetscCall(MatCreateVecsEmpty(A,&ctx->y2,NULL));
317:     PetscCall(MatCreateVecs(A,NULL,&ctx->w));
318:     PetscCall(MatCreateShell(PetscObjectComm((PetscObject)svd),m+n,m+n,M+N,M+N,ctx,C));
319:     PetscCall(MatShellSetOperation(*C,MATOP_GET_DIAGONAL,(void(*)(void))MatGetDiagonal_ECross));
320:     PetscCall(MatShellSetOperation(*C,MATOP_DESTROY,(void(*)(void))MatDestroy_ECross));
321: #if defined(PETSC_HAVE_CUDA)
322:     PetscCall(PetscObjectTypeCompareAny((PetscObject)(svd->swapped?AT:A),&cuda,MATSEQAIJCUSPARSE,MATMPIAIJCUSPARSE,""));
323:     if (cuda) PetscCall(MatShellSetOperation(*C,MATOP_MULT,(void(*)(void))MatMult_ECross_CUDA));
324:     else
325: #endif
326:       PetscCall(MatShellSetOperation(*C,MATOP_MULT,(void(*)(void))MatMult_ECross));
327:     PetscCall(MatGetVecType(A,&vtype));
328:     PetscCall(MatSetVecType(*C,vtype));
329: #if defined(PETSC_HAVE_CUDA)
330:     if (cuda) {
331:       /* check alignment of bottom block */
332:       PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)ctx->x1),&size));
333:       PetscCall(VecGetOwnershipRanges(ctx->x1,&ranges));
334:       for (i=0;i<size;i++) {
335:         ctx->misaligned = (((ranges[i+1]-ranges[i])*sizeof(PetscScalar))%16)? PETSC_TRUE: PETSC_FALSE;
336:         if (ctx->misaligned) break;
337:       }
338:       if (ctx->misaligned) {  /* create work vectors for MatMult */
339:         PetscCall(VecDuplicate(ctx->x2,&ctx->wx2));
340:         PetscCall(VecDuplicate(ctx->y2,&ctx->wy2));
341:       }
342:     }
343: #endif
344:   }
345:   PetscFunctionReturn(PETSC_SUCCESS);
346: }

348: /* Convergence test relative to the norm of R (used in GSVD only) */
349: static PetscErrorCode EPSConv_Cyclic(EPS eps,PetscScalar eigr,PetscScalar eigi,PetscReal res,PetscReal *errest,void *ctx)
350: {
351:   SVD svd = (SVD)ctx;

353:   PetscFunctionBegin;
354:   *errest = res/PetscMax(svd->nrma,svd->nrmb);
355:   PetscFunctionReturn(PETSC_SUCCESS);
356: }

358: static PetscErrorCode SVDSetUp_Cyclic(SVD svd)
359: {
360:   SVD_CYCLIC        *cyclic = (SVD_CYCLIC*)svd->data;
361:   PetscInt          M,N,m,n,p,k,i,isl,offset,nev,ncv,mpd,maxit;
362:   PetscReal         tol;
363:   const PetscScalar *isa,*oa;
364:   PetscScalar       *va;
365:   EPSProblemType    ptype;
366:   PetscBool         trackall,issinv;
367:   Vec               v,t;
368:   ST                st;
369:   Mat               Omega;
370:   MatType           Atype;

372:   PetscFunctionBegin;
373:   PetscCall(MatGetSize(svd->A,&M,&N));
374:   PetscCall(MatGetLocalSize(svd->A,&m,&n));
375:   if (!cyclic->eps) PetscCall(SVDCyclicGetEPS(svd,&cyclic->eps));
376:   PetscCall(MatDestroy(&cyclic->C));
377:   PetscCall(MatDestroy(&cyclic->D));
378:   if (svd->isgeneralized) {
379:     if (svd->which==SVD_SMALLEST) {  /* alternative pencil */
380:       PetscCall(MatCreateVecs(svd->B,NULL,&t));
381:       PetscCall(SVDCyclicGetCyclicMat(svd,svd->B,svd->BT,&cyclic->C));
382:       PetscCall(SVDCyclicGetECrossMat(svd,svd->A,svd->AT,&cyclic->D,t));
383:     } else {
384:       PetscCall(MatCreateVecs(svd->A,NULL,&t));
385:       PetscCall(SVDCyclicGetCyclicMat(svd,svd->A,svd->AT,&cyclic->C));
386:       PetscCall(SVDCyclicGetECrossMat(svd,svd->B,svd->BT,&cyclic->D,t));
387:     }
388:     PetscCall(VecDestroy(&t));
389:     PetscCall(EPSSetOperators(cyclic->eps,cyclic->C,cyclic->D));
390:     PetscCall(EPSGetProblemType(cyclic->eps,&ptype));
391:     if (!ptype) PetscCall(EPSSetProblemType(cyclic->eps,EPS_GHEP));
392:   } else if (svd->ishyperbolic) {
393:     PetscCall(SVDCyclicGetCyclicMat(svd,svd->A,svd->AT,&cyclic->C));
394:     PetscCall(MatCreateVecs(cyclic->C,&v,NULL));
395:     PetscCall(VecSet(v,1.0));
396:     PetscCall(VecGetArrayRead(svd->omega,&oa));
397:     PetscCall(VecGetArray(v,&va));
398:     if (svd->swapped) PetscCall(PetscArraycpy(va+m,oa,n));
399:     else PetscCall(PetscArraycpy(va,oa,m));
400:     PetscCall(VecRestoreArrayRead(svd->omega,&oa));
401:     PetscCall(VecRestoreArray(v,&va));
402:     PetscCall(MatGetType(svd->OP,&Atype));
403:     PetscCall(MatCreate(PetscObjectComm((PetscObject)svd),&Omega));
404:     PetscCall(MatSetSizes(Omega,m+n,m+n,M+N,M+N));
405:     PetscCall(MatSetType(Omega,Atype));
406:     PetscCall(MatDiagonalSet(Omega,v,INSERT_VALUES));
407:     PetscCall(EPSSetOperators(cyclic->eps,cyclic->C,Omega));
408:     PetscCall(EPSSetProblemType(cyclic->eps,EPS_GHIEP));
409:     PetscCall(MatDestroy(&Omega));
410:     PetscCall(VecDestroy(&v));
411:   } else {
412:     PetscCall(SVDCyclicGetCyclicMat(svd,svd->A,svd->AT,&cyclic->C));
413:     PetscCall(EPSSetOperators(cyclic->eps,cyclic->C,NULL));
414:     PetscCall(EPSSetProblemType(cyclic->eps,EPS_HEP));
415:   }
416:   if (!cyclic->usereps) {
417:     if (svd->which == SVD_LARGEST) {
418:       PetscCall(EPSGetST(cyclic->eps,&st));
419:       PetscCall(PetscObjectTypeCompare((PetscObject)st,STSINVERT,&issinv));
420:       if (issinv) PetscCall(EPSSetWhichEigenpairs(cyclic->eps,EPS_TARGET_MAGNITUDE));
421:       else if (svd->ishyperbolic) PetscCall(EPSSetWhichEigenpairs(cyclic->eps,EPS_LARGEST_MAGNITUDE));
422:       else PetscCall(EPSSetWhichEigenpairs(cyclic->eps,EPS_LARGEST_REAL));
423:     } else {
424:       if (svd->isgeneralized) {  /* computes sigma^{-1} via alternative pencil */
425:         PetscCall(EPSSetWhichEigenpairs(cyclic->eps,EPS_LARGEST_REAL));
426:       } else {
427:         if (svd->ishyperbolic) PetscCall(EPSSetWhichEigenpairs(cyclic->eps,EPS_TARGET_MAGNITUDE));
428:         else PetscCall(EPSSetEigenvalueComparison(cyclic->eps,SlepcCompareSmallestPosReal,NULL));
429:         PetscCall(EPSSetTarget(cyclic->eps,0.0));
430:       }
431:     }
432:     PetscCall(EPSGetDimensions(cyclic->eps,&nev,&ncv,&mpd));
433:     PetscCheck(nev==1 || nev>=2*svd->nsv,PetscObjectComm((PetscObject)svd),PETSC_ERR_ARG_WRONG,"The number of requested eigenvalues %" PetscInt_FMT " must be at least 2*%" PetscInt_FMT,nev,svd->nsv);
434:     nev = PetscMax(nev,2*svd->nsv);
435:     if (ncv==PETSC_DEFAULT && svd->ncv!=PETSC_DEFAULT) ncv = PetscMax(3*svd->nsv,svd->ncv);
436:     if (mpd==PETSC_DEFAULT && svd->mpd!=PETSC_DEFAULT) mpd = svd->mpd;
437:     PetscCall(EPSSetDimensions(cyclic->eps,nev,ncv,mpd));
438:     PetscCall(EPSGetTolerances(cyclic->eps,&tol,&maxit));
439:     if (tol==(PetscReal)PETSC_DEFAULT) tol = svd->tol==(PetscReal)PETSC_DEFAULT? SLEPC_DEFAULT_TOL/10.0: svd->tol;
440:     if (maxit==PETSC_DEFAULT && svd->max_it!=PETSC_DEFAULT) maxit = svd->max_it;
441:     PetscCall(EPSSetTolerances(cyclic->eps,tol,maxit));
442:     switch (svd->conv) {
443:     case SVD_CONV_ABS:
444:       PetscCall(EPSSetConvergenceTest(cyclic->eps,EPS_CONV_ABS));break;
445:     case SVD_CONV_REL:
446:       PetscCall(EPSSetConvergenceTest(cyclic->eps,EPS_CONV_REL));break;
447:     case SVD_CONV_NORM:
448:       if (svd->isgeneralized) {
449:         if (!svd->nrma) PetscCall(MatNorm(svd->OP,NORM_INFINITY,&svd->nrma));
450:         if (!svd->nrmb) PetscCall(MatNorm(svd->OPb,NORM_INFINITY,&svd->nrmb));
451:         PetscCall(EPSSetConvergenceTestFunction(cyclic->eps,EPSConv_Cyclic,svd,NULL));
452:       } else {
453:         PetscCall(EPSSetConvergenceTest(cyclic->eps,EPS_CONV_NORM));break;
454:       }
455:       break;
456:     case SVD_CONV_MAXIT:
457:       SETERRQ(PetscObjectComm((PetscObject)svd),PETSC_ERR_SUP,"Maxit convergence test not supported in this solver");
458:     case SVD_CONV_USER:
459:       SETERRQ(PetscObjectComm((PetscObject)svd),PETSC_ERR_SUP,"User-defined convergence test not supported in this solver");
460:     }
461:   }
462:   SVDCheckUnsupported(svd,SVD_FEATURE_STOPPING);
463:   /* Transfer the trackall option from svd to eps */
464:   PetscCall(SVDGetTrackAll(svd,&trackall));
465:   PetscCall(EPSSetTrackAll(cyclic->eps,trackall));
466:   /* Transfer the initial subspace from svd to eps */
467:   if (svd->nini<0 || svd->ninil<0) {
468:     for (i=0;i<-PetscMin(svd->nini,svd->ninil);i++) {
469:       PetscCall(MatCreateVecs(cyclic->C,&v,NULL));
470:       PetscCall(VecGetArrayWrite(v,&va));
471:       if (svd->isgeneralized) PetscCall(MatGetLocalSize(svd->B,&p,NULL));
472:       k = (svd->isgeneralized && svd->which==SVD_SMALLEST)? p: m;  /* size of upper block row */
473:       if (i<-svd->ninil) {
474:         PetscCall(VecGetArrayRead(svd->ISL[i],&isa));
475:         if (svd->isgeneralized) {
476:           PetscCall(VecGetLocalSize(svd->ISL[i],&isl));
477:           PetscCheck(isl==m+p,PetscObjectComm((PetscObject)svd),PETSC_ERR_SUP,"Size mismatch for left initial vector");
478:           offset = (svd->which==SVD_SMALLEST)? m: 0;
479:           PetscCall(PetscArraycpy(va,isa+offset,k));
480:         } else {
481:           PetscCall(VecGetLocalSize(svd->ISL[i],&isl));
482:           PetscCheck(isl==k,PetscObjectComm((PetscObject)svd),PETSC_ERR_SUP,"Size mismatch for left initial vector");
483:           PetscCall(PetscArraycpy(va,isa,k));
484:         }
485:         PetscCall(VecRestoreArrayRead(svd->IS[i],&isa));
486:       } else PetscCall(PetscArrayzero(&va,k));
487:       if (i<-svd->nini) {
488:         PetscCall(VecGetLocalSize(svd->IS[i],&isl));
489:         PetscCheck(isl==n,PetscObjectComm((PetscObject)svd),PETSC_ERR_SUP,"Size mismatch for right initial vector");
490:         PetscCall(VecGetArrayRead(svd->IS[i],&isa));
491:         PetscCall(PetscArraycpy(va+k,isa,n));
492:         PetscCall(VecRestoreArrayRead(svd->IS[i],&isa));
493:       } else PetscCall(PetscArrayzero(va+k,n));
494:       PetscCall(VecRestoreArrayWrite(v,&va));
495:       PetscCall(VecDestroy(&svd->IS[i]));
496:       svd->IS[i] = v;
497:     }
498:     svd->nini = PetscMin(svd->nini,svd->ninil);
499:     PetscCall(EPSSetInitialSpace(cyclic->eps,-svd->nini,svd->IS));
500:     PetscCall(SlepcBasisDestroy_Private(&svd->nini,&svd->IS));
501:     PetscCall(SlepcBasisDestroy_Private(&svd->ninil,&svd->ISL));
502:   }
503:   PetscCall(EPSSetUp(cyclic->eps));
504:   PetscCall(EPSGetDimensions(cyclic->eps,NULL,&svd->ncv,&svd->mpd));
505:   svd->ncv = PetscMin(svd->ncv,PetscMin(M,N));
506:   PetscCall(EPSGetTolerances(cyclic->eps,NULL,&svd->max_it));
507:   if (svd->tol==(PetscReal)PETSC_DEFAULT) svd->tol = SLEPC_DEFAULT_TOL;

509:   svd->leftbasis = PETSC_TRUE;
510:   PetscCall(SVDAllocateSolution(svd,0));
511:   PetscFunctionReturn(PETSC_SUCCESS);
512: }

514: static PetscErrorCode SVDCyclicCheckEigenvalue(SVD svd,PetscScalar er,PetscScalar ei,PetscReal *sigma,PetscBool *isreal)
515: {
516:   PetscFunctionBegin;
517:   if (svd->ishyperbolic && PetscDefined(USE_COMPLEX) && PetscAbsReal(PetscImaginaryPart(er))>10*PetscAbsReal(PetscRealPart(er))) {
518:     *sigma = PetscImaginaryPart(er);
519:     if (isreal) *isreal = PETSC_FALSE;
520:   } else if (svd->ishyperbolic && !PetscDefined(USE_COMPLEX) && PetscAbsScalar(ei)>10*PetscAbsScalar(er)) {
521:     *sigma = PetscRealPart(ei);
522:     if (isreal) *isreal = PETSC_FALSE;
523:   } else {
524:     *sigma = PetscRealPart(er);
525:     if (isreal) *isreal = PETSC_TRUE;
526:   }
527:   PetscFunctionReturn(PETSC_SUCCESS);
528: }

530: static PetscErrorCode SVDSolve_Cyclic(SVD svd)
531: {
532:   SVD_CYCLIC     *cyclic = (SVD_CYCLIC*)svd->data;
533:   PetscInt       i,j,nconv;
534:   PetscScalar    er,ei;
535:   PetscReal      sigma;

537:   PetscFunctionBegin;
538:   PetscCall(EPSSolve(cyclic->eps));
539:   PetscCall(EPSGetConverged(cyclic->eps,&nconv));
540:   PetscCall(EPSGetIterationNumber(cyclic->eps,&svd->its));
541:   PetscCall(EPSGetConvergedReason(cyclic->eps,(EPSConvergedReason*)&svd->reason));
542:   for (i=0,j=0;i<nconv;i++) {
543:     PetscCall(EPSGetEigenvalue(cyclic->eps,i,&er,&ei));
544:     PetscCall(SVDCyclicCheckEigenvalue(svd,er,ei,&sigma,NULL));
545:     if (sigma>0.0) {
546:       if (svd->isgeneralized && svd->which==SVD_SMALLEST) svd->sigma[j] = 1.0/sigma;
547:       else svd->sigma[j] = sigma;
548:       j++;
549:     }
550:   }
551:   svd->nconv = j;
552:   PetscFunctionReturn(PETSC_SUCCESS);
553: }

555: static PetscErrorCode SVDComputeVectors_Cyclic_Standard(SVD svd)
556: {
557:   SVD_CYCLIC        *cyclic = (SVD_CYCLIC*)svd->data;
558:   PetscInt          i,j,m,nconv;
559:   PetscScalar       er,ei;
560:   PetscReal         sigma;
561:   const PetscScalar *px;
562:   Vec               x,x1,x2;

564:   PetscFunctionBegin;
565:   PetscCall(MatCreateVecs(cyclic->C,&x,NULL));
566:   PetscCall(MatGetLocalSize(svd->A,&m,NULL));
567:   PetscCall(MatCreateVecsEmpty(svd->A,&x2,&x1));
568:   PetscCall(EPSGetConverged(cyclic->eps,&nconv));
569:   for (i=0,j=0;i<nconv;i++) {
570:     PetscCall(EPSGetEigenpair(cyclic->eps,i,&er,&ei,x,NULL));
571:     PetscCall(SVDCyclicCheckEigenvalue(svd,er,ei,&sigma,NULL));
572:     if (sigma<0.0) continue;
573:     PetscCall(VecGetArrayRead(x,&px));
574:     PetscCall(VecPlaceArray(x1,px));
575:     PetscCall(VecPlaceArray(x2,px+m));
576:     PetscCall(BVInsertVec(svd->U,j,x1));
577:     PetscCall(BVScaleColumn(svd->U,j,PETSC_SQRT2));
578:     PetscCall(BVInsertVec(svd->V,j,x2));
579:     PetscCall(BVScaleColumn(svd->V,j,PETSC_SQRT2));
580:     PetscCall(VecResetArray(x1));
581:     PetscCall(VecResetArray(x2));
582:     PetscCall(VecRestoreArrayRead(x,&px));
583:     j++;
584:   }
585:   PetscCall(VecDestroy(&x));
586:   PetscCall(VecDestroy(&x1));
587:   PetscCall(VecDestroy(&x2));
588:   PetscFunctionReturn(PETSC_SUCCESS);
589: }

591: static PetscErrorCode SVDComputeVectors_Cyclic_Generalized(SVD svd)
592: {
593:   SVD_CYCLIC        *cyclic = (SVD_CYCLIC*)svd->data;
594:   PetscInt          i,j,m,p,nconv;
595:   PetscScalar       *dst,er,ei;
596:   PetscReal         sigma;
597:   const PetscScalar *src,*px;
598:   Vec               u,v,x,x1,x2,uv;

600:   PetscFunctionBegin;
601:   PetscCall(MatGetLocalSize(svd->A,&m,NULL));
602:   PetscCall(MatGetLocalSize(svd->B,&p,NULL));
603:   PetscCall(MatCreateVecs(cyclic->C,&x,NULL));
604:   if (svd->which==SVD_SMALLEST) PetscCall(MatCreateVecsEmpty(svd->B,&x1,&x2));
605:   else PetscCall(MatCreateVecsEmpty(svd->A,&x2,&x1));
606:   PetscCall(MatCreateVecs(svd->A,NULL,&u));
607:   PetscCall(MatCreateVecs(svd->B,NULL,&v));
608:   PetscCall(EPSGetConverged(cyclic->eps,&nconv));
609:   for (i=0,j=0;i<nconv;i++) {
610:     PetscCall(EPSGetEigenpair(cyclic->eps,i,&er,&ei,x,NULL));
611:     PetscCall(SVDCyclicCheckEigenvalue(svd,er,ei,&sigma,NULL));
612:     if (sigma<0.0) continue;
613:     if (svd->which==SVD_SMALLEST) {
614:       /* evec_i = 1/sqrt(2)*[ v_i; w_i ],  w_i = x_i/c_i */
615:       PetscCall(VecGetArrayRead(x,&px));
616:       PetscCall(VecPlaceArray(x2,px));
617:       PetscCall(VecPlaceArray(x1,px+p));
618:       PetscCall(VecCopy(x2,v));
619:       PetscCall(VecScale(v,PETSC_SQRT2));  /* v_i = sqrt(2)*evec_i_1 */
620:       PetscCall(VecScale(x1,PETSC_SQRT2)); /* w_i = sqrt(2)*evec_i_2 */
621:       PetscCall(MatMult(svd->A,x1,u));     /* A*w_i = u_i */
622:       PetscCall(VecScale(x1,1.0/PetscSqrtScalar(1.0+sigma*sigma)));  /* x_i = w_i*c_i */
623:       PetscCall(BVInsertVec(svd->V,j,x1));
624:       PetscCall(VecResetArray(x2));
625:       PetscCall(VecResetArray(x1));
626:       PetscCall(VecRestoreArrayRead(x,&px));
627:     } else {
628:       /* evec_i = 1/sqrt(2)*[ u_i; w_i ],  w_i = x_i/s_i */
629:       PetscCall(VecGetArrayRead(x,&px));
630:       PetscCall(VecPlaceArray(x1,px));
631:       PetscCall(VecPlaceArray(x2,px+m));
632:       PetscCall(VecCopy(x1,u));
633:       PetscCall(VecScale(u,PETSC_SQRT2));  /* u_i = sqrt(2)*evec_i_1 */
634:       PetscCall(VecScale(x2,PETSC_SQRT2)); /* w_i = sqrt(2)*evec_i_2 */
635:       PetscCall(MatMult(svd->B,x2,v));     /* B*w_i = v_i */
636:       PetscCall(VecScale(x2,1.0/PetscSqrtScalar(1.0+sigma*sigma)));  /* x_i = w_i*s_i */
637:       PetscCall(BVInsertVec(svd->V,j,x2));
638:       PetscCall(VecResetArray(x1));
639:       PetscCall(VecResetArray(x2));
640:       PetscCall(VecRestoreArrayRead(x,&px));
641:     }
642:     /* copy [u;v] to U[j] */
643:     PetscCall(BVGetColumn(svd->U,j,&uv));
644:     PetscCall(VecGetArrayWrite(uv,&dst));
645:     PetscCall(VecGetArrayRead(u,&src));
646:     PetscCall(PetscArraycpy(dst,src,m));
647:     PetscCall(VecRestoreArrayRead(u,&src));
648:     PetscCall(VecGetArrayRead(v,&src));
649:     PetscCall(PetscArraycpy(dst+m,src,p));
650:     PetscCall(VecRestoreArrayRead(v,&src));
651:     PetscCall(VecRestoreArrayWrite(uv,&dst));
652:     PetscCall(BVRestoreColumn(svd->U,j,&uv));
653:     j++;
654:   }
655:   PetscCall(VecDestroy(&x));
656:   PetscCall(VecDestroy(&x1));
657:   PetscCall(VecDestroy(&x2));
658:   PetscCall(VecDestroy(&u));
659:   PetscCall(VecDestroy(&v));
660:   PetscFunctionReturn(PETSC_SUCCESS);
661: }

663: #if defined(PETSC_USE_COMPLEX)
664: /* VecMaxAbs: returns the entry of x that has max(abs(x(i))), using w as a workspace vector */
665: static PetscErrorCode VecMaxAbs(Vec x,Vec w,PetscScalar *v)
666: {
667:   PetscMPIInt       size,rank,root;
668:   const PetscScalar *xx;
669:   const PetscInt    *ranges;
670:   PetscReal         val;
671:   PetscInt          p;

673:   PetscFunctionBegin;
674:   PetscCall(VecCopy(x,w));
675:   PetscCall(VecAbs(w));
676:   PetscCall(VecMax(w,&p,&val));
677:   PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)x),&size));
678:   PetscCallMPI(MPI_Comm_rank(PetscObjectComm((PetscObject)x),&rank));
679:   PetscCall(VecGetOwnershipRanges(x,&ranges));
680:   for (root=0;root<size;root++) if (p>=ranges[root] && p<ranges[root+1]) break;
681:   if (rank==root) {
682:     PetscCall(VecGetArrayRead(x,&xx));
683:     *v = xx[p-ranges[root]];
684:     PetscCall(VecRestoreArrayRead(x,&xx));
685:   }
686:   PetscCallMPI(MPI_Bcast(v,1,MPIU_SCALAR,root,PetscObjectComm((PetscObject)x)));
687:   PetscFunctionReturn(PETSC_SUCCESS);
688: }
689: #endif

691: static PetscErrorCode SVDComputeVectors_Cyclic_Hyperbolic(SVD svd)
692: {
693:   SVD_CYCLIC        *cyclic = (SVD_CYCLIC*)svd->data;
694:   PetscInt          i,j,m,n,nconv;
695:   PetscScalar       er,ei;
696:   PetscReal         sigma,nrm;
697:   PetscBool         isreal;
698:   const PetscScalar *px;
699:   Vec               u,x,xi=NULL,x1,x2,x1i=NULL,x2i;
700:   BV                U=NULL,V=NULL;
701: #if !defined(PETSC_USE_COMPLEX)
702:   const PetscScalar *pxi;
703:   PetscReal         nrmr,nrmi;
704: #else
705:   PetscScalar       alpha;
706: #endif

708:   PetscFunctionBegin;
709:   PetscCall(MatCreateVecs(cyclic->C,&x,svd->ishyperbolic?&xi:NULL));
710:   PetscCall(MatGetLocalSize(svd->A,&m,NULL));
711:   PetscCall(MatCreateVecsEmpty(svd->OP,&x2,&x1));
712: #if defined(PETSC_USE_COMPLEX)
713:   PetscCall(MatCreateVecs(svd->OP,&x2i,&x1i));
714: #else
715:   PetscCall(MatCreateVecsEmpty(svd->OP,&x2i,&x1i));
716: #endif
717:   /* set-up Omega-normalization of U */
718:   U = svd->swapped? svd->V: svd->U;
719:   V = svd->swapped? svd->U: svd->V;
720:   PetscCall(BVGetSizes(U,&n,NULL,NULL));
721:   PetscCall(BV_SetMatrixDiagonal(U,svd->omega,svd->A));
722:   PetscCall(EPSGetConverged(cyclic->eps,&nconv));
723:   for (i=0,j=0;i<nconv;i++) {
724:     PetscCall(EPSGetEigenpair(cyclic->eps,i,&er,&ei,x,xi));
725:     PetscCall(SVDCyclicCheckEigenvalue(svd,er,ei,&sigma,&isreal));
726:     if (sigma<0.0) continue;
727:     PetscCall(VecGetArrayRead(x,&px));
728:     if (svd->swapped) {
729:       PetscCall(VecPlaceArray(x2,px));
730:       PetscCall(VecPlaceArray(x1,px+m));
731:     } else {
732:       PetscCall(VecPlaceArray(x1,px));
733:       PetscCall(VecPlaceArray(x2,px+n));
734:     }
735: #if defined(PETSC_USE_COMPLEX)
736:     PetscCall(BVInsertVec(U,j,x1));
737:     PetscCall(BVInsertVec(V,j,x2));
738:     if (!isreal) {
739:       PetscCall(VecMaxAbs(x1,x1i,&alpha));
740:       PetscCall(BVScaleColumn(U,j,PetscAbsScalar(alpha)/alpha));
741:       PetscCall(BVScaleColumn(V,j,PetscAbsScalar(alpha)/(alpha*PETSC_i)));
742:     }
743: #else
744:     PetscCall(VecGetArrayRead(xi,&pxi));
745:     if (svd->swapped) {
746:       PetscCall(VecPlaceArray(x2i,pxi));
747:       PetscCall(VecPlaceArray(x1i,pxi+m));
748:     } else {
749:       PetscCall(VecPlaceArray(x1i,pxi));
750:       PetscCall(VecPlaceArray(x2i,pxi+n));
751:     }
752:     PetscCall(VecNorm(x2,NORM_2,&nrmr));
753:     PetscCall(VecNorm(x2i,NORM_2,&nrmi));
754:     if (nrmi>nrmr) {
755:       if (isreal) {
756:         PetscCall(BVInsertVec(U,j,x1i));
757:         PetscCall(BVInsertVec(V,j,x2i));
758:       } else {
759:         PetscCall(BVInsertVec(U,j,x1));
760:         PetscCall(BVInsertVec(V,j,x2i));
761:       }
762:     } else {
763:       if (isreal) {
764:         PetscCall(BVInsertVec(U,j,x1));
765:         PetscCall(BVInsertVec(V,j,x2));
766:       } else {
767:         PetscCall(BVInsertVec(U,j,x1i));
768:         PetscCall(BVScaleColumn(U,j,-1.0));
769:         PetscCall(BVInsertVec(V,j,x2));
770:       }
771:     }
772:     PetscCall(VecResetArray(x1i));
773:     PetscCall(VecResetArray(x2i));
774:     PetscCall(VecRestoreArrayRead(xi,&pxi));
775: #endif
776:     PetscCall(VecResetArray(x1));
777:     PetscCall(VecResetArray(x2));
778:     PetscCall(VecRestoreArrayRead(x,&px));
779:     PetscCall(BVGetColumn(U,j,&u));
780:     PetscCall(VecPointwiseMult(u,u,svd->omega));
781:     PetscCall(BVRestoreColumn(U,j,&u));
782:     PetscCall(BVNormColumn(U,j,NORM_2,&nrm));
783:     PetscCall(BVScaleColumn(U,j,1.0/PetscAbs(nrm)));
784:     svd->sign[j] = PetscSign(nrm);
785:     PetscCall(BVNormColumn(V,j,NORM_2,&nrm));
786:     PetscCall(BVScaleColumn(V,j,1.0/nrm));
787:     j++;
788:   }
789:   PetscCall(VecDestroy(&x));
790:   PetscCall(VecDestroy(&x1));
791:   PetscCall(VecDestroy(&x2));
792:   PetscCall(VecDestroy(&xi));
793:   PetscCall(VecDestroy(&x1i));
794:   PetscCall(VecDestroy(&x2i));
795:   PetscFunctionReturn(PETSC_SUCCESS);
796: }

798: static PetscErrorCode SVDComputeVectors_Cyclic(SVD svd)
799: {
800:   PetscFunctionBegin;
801:   switch (svd->problem_type) {
802:     case SVD_STANDARD:
803:       PetscCall(SVDComputeVectors_Cyclic_Standard(svd));
804:       break;
805:     case SVD_GENERALIZED:
806:       PetscCall(SVDComputeVectors_Cyclic_Generalized(svd));
807:       break;
808:     case SVD_HYPERBOLIC:
809:       PetscCall(SVDComputeVectors_Cyclic_Hyperbolic(svd));
810:       break;
811:     default:
812:       SETERRQ(PetscObjectComm((PetscObject)svd),PETSC_ERR_ARG_WRONG,"Unknown singular value problem type");
813:   }
814:   PetscFunctionReturn(PETSC_SUCCESS);
815: }

817: static PetscErrorCode EPSMonitor_Cyclic(EPS eps,PetscInt its,PetscInt nconv,PetscScalar *eigr,PetscScalar *eigi,PetscReal *errest,PetscInt nest,void *ctx)
818: {
819:   PetscInt       i,j;
820:   SVD            svd = (SVD)ctx;
821:   PetscScalar    er,ei;
822:   PetscReal      sigma;
823:   ST             st;

825:   PetscFunctionBegin;
826:   nconv = 0;
827:   PetscCall(EPSGetST(eps,&st));
828:   for (i=0,j=0;i<PetscMin(nest,svd->ncv);i++) {
829:     er = eigr[i]; ei = eigi[i];
830:     PetscCall(STBackTransform(st,1,&er,&ei));
831:     PetscCall(SVDCyclicCheckEigenvalue(svd,er,ei,&sigma,NULL));
832:     if (sigma>0.0) {
833:       svd->sigma[j]  = sigma;
834:       svd->errest[j] = errest[i];
835:       if (errest[i] && errest[i] < svd->tol) nconv++;
836:       j++;
837:     }
838:   }
839:   nest = j;
840:   PetscCall(SVDMonitor(svd,its,nconv,svd->sigma,svd->errest,nest));
841:   PetscFunctionReturn(PETSC_SUCCESS);
842: }

844: static PetscErrorCode SVDSetFromOptions_Cyclic(SVD svd,PetscOptionItems *PetscOptionsObject)
845: {
846:   PetscBool      set,val;
847:   SVD_CYCLIC     *cyclic = (SVD_CYCLIC*)svd->data;
848:   ST             st;

850:   PetscFunctionBegin;
851:   PetscOptionsHeadBegin(PetscOptionsObject,"SVD Cyclic Options");

853:     PetscCall(PetscOptionsBool("-svd_cyclic_explicitmatrix","Use cyclic explicit matrix","SVDCyclicSetExplicitMatrix",cyclic->explicitmatrix,&val,&set));
854:     if (set) PetscCall(SVDCyclicSetExplicitMatrix(svd,val));

856:   PetscOptionsHeadEnd();

858:   if (!cyclic->eps) PetscCall(SVDCyclicGetEPS(svd,&cyclic->eps));
859:   if (!cyclic->explicitmatrix && !cyclic->usereps) {
860:     /* use as default an ST with shell matrix and Jacobi */
861:     PetscCall(EPSGetST(cyclic->eps,&st));
862:     PetscCall(STSetMatMode(st,ST_MATMODE_SHELL));
863:   }
864:   PetscCall(EPSSetFromOptions(cyclic->eps));
865:   PetscFunctionReturn(PETSC_SUCCESS);
866: }

868: static PetscErrorCode SVDCyclicSetExplicitMatrix_Cyclic(SVD svd,PetscBool explicitmat)
869: {
870:   SVD_CYCLIC *cyclic = (SVD_CYCLIC*)svd->data;

872:   PetscFunctionBegin;
873:   if (cyclic->explicitmatrix != explicitmat) {
874:     cyclic->explicitmatrix = explicitmat;
875:     svd->state = SVD_STATE_INITIAL;
876:   }
877:   PetscFunctionReturn(PETSC_SUCCESS);
878: }

880: /*@
881:    SVDCyclicSetExplicitMatrix - Indicate if the eigensolver operator
882:    H(A) = [ 0  A ; A^T 0 ] must be computed explicitly.

884:    Logically Collective

886:    Input Parameters:
887: +  svd         - singular value solver
888: -  explicitmat - boolean flag indicating if H(A) is built explicitly

890:    Options Database Key:
891: .  -svd_cyclic_explicitmatrix <boolean> - Indicates the boolean flag

893:    Level: advanced

895: .seealso: SVDCyclicGetExplicitMatrix()
896: @*/
897: PetscErrorCode SVDCyclicSetExplicitMatrix(SVD svd,PetscBool explicitmat)
898: {
899:   PetscFunctionBegin;
902:   PetscTryMethod(svd,"SVDCyclicSetExplicitMatrix_C",(SVD,PetscBool),(svd,explicitmat));
903:   PetscFunctionReturn(PETSC_SUCCESS);
904: }

906: static PetscErrorCode SVDCyclicGetExplicitMatrix_Cyclic(SVD svd,PetscBool *explicitmat)
907: {
908:   SVD_CYCLIC *cyclic = (SVD_CYCLIC*)svd->data;

910:   PetscFunctionBegin;
911:   *explicitmat = cyclic->explicitmatrix;
912:   PetscFunctionReturn(PETSC_SUCCESS);
913: }

915: /*@
916:    SVDCyclicGetExplicitMatrix - Returns the flag indicating if H(A) is built explicitly.

918:    Not Collective

920:    Input Parameter:
921: .  svd  - singular value solver

923:    Output Parameter:
924: .  explicitmat - the mode flag

926:    Level: advanced

928: .seealso: SVDCyclicSetExplicitMatrix()
929: @*/
930: PetscErrorCode SVDCyclicGetExplicitMatrix(SVD svd,PetscBool *explicitmat)
931: {
932:   PetscFunctionBegin;
934:   PetscAssertPointer(explicitmat,2);
935:   PetscUseMethod(svd,"SVDCyclicGetExplicitMatrix_C",(SVD,PetscBool*),(svd,explicitmat));
936:   PetscFunctionReturn(PETSC_SUCCESS);
937: }

939: static PetscErrorCode SVDCyclicSetEPS_Cyclic(SVD svd,EPS eps)
940: {
941:   SVD_CYCLIC      *cyclic = (SVD_CYCLIC*)svd->data;

943:   PetscFunctionBegin;
944:   PetscCall(PetscObjectReference((PetscObject)eps));
945:   PetscCall(EPSDestroy(&cyclic->eps));
946:   cyclic->eps     = eps;
947:   cyclic->usereps = PETSC_TRUE;
948:   svd->state      = SVD_STATE_INITIAL;
949:   PetscFunctionReturn(PETSC_SUCCESS);
950: }

952: /*@
953:    SVDCyclicSetEPS - Associate an eigensolver object (EPS) to the
954:    singular value solver.

956:    Collective

958:    Input Parameters:
959: +  svd - singular value solver
960: -  eps - the eigensolver object

962:    Level: advanced

964: .seealso: SVDCyclicGetEPS()
965: @*/
966: PetscErrorCode SVDCyclicSetEPS(SVD svd,EPS eps)
967: {
968:   PetscFunctionBegin;
971:   PetscCheckSameComm(svd,1,eps,2);
972:   PetscTryMethod(svd,"SVDCyclicSetEPS_C",(SVD,EPS),(svd,eps));
973:   PetscFunctionReturn(PETSC_SUCCESS);
974: }

976: static PetscErrorCode SVDCyclicGetEPS_Cyclic(SVD svd,EPS *eps)
977: {
978:   SVD_CYCLIC     *cyclic = (SVD_CYCLIC*)svd->data;

980:   PetscFunctionBegin;
981:   if (!cyclic->eps) {
982:     PetscCall(EPSCreate(PetscObjectComm((PetscObject)svd),&cyclic->eps));
983:     PetscCall(PetscObjectIncrementTabLevel((PetscObject)cyclic->eps,(PetscObject)svd,1));
984:     PetscCall(EPSSetOptionsPrefix(cyclic->eps,((PetscObject)svd)->prefix));
985:     PetscCall(EPSAppendOptionsPrefix(cyclic->eps,"svd_cyclic_"));
986:     PetscCall(PetscObjectSetOptions((PetscObject)cyclic->eps,((PetscObject)svd)->options));
987:     PetscCall(EPSSetWhichEigenpairs(cyclic->eps,EPS_LARGEST_REAL));
988:     PetscCall(EPSMonitorSet(cyclic->eps,EPSMonitor_Cyclic,svd,NULL));
989:   }
990:   *eps = cyclic->eps;
991:   PetscFunctionReturn(PETSC_SUCCESS);
992: }

994: /*@
995:    SVDCyclicGetEPS - Retrieve the eigensolver object (EPS) associated
996:    to the singular value solver.

998:    Collective

1000:    Input Parameter:
1001: .  svd - singular value solver

1003:    Output Parameter:
1004: .  eps - the eigensolver object

1006:    Level: advanced

1008: .seealso: SVDCyclicSetEPS()
1009: @*/
1010: PetscErrorCode SVDCyclicGetEPS(SVD svd,EPS *eps)
1011: {
1012:   PetscFunctionBegin;
1014:   PetscAssertPointer(eps,2);
1015:   PetscUseMethod(svd,"SVDCyclicGetEPS_C",(SVD,EPS*),(svd,eps));
1016:   PetscFunctionReturn(PETSC_SUCCESS);
1017: }

1019: static PetscErrorCode SVDView_Cyclic(SVD svd,PetscViewer viewer)
1020: {
1021:   SVD_CYCLIC     *cyclic = (SVD_CYCLIC*)svd->data;
1022:   PetscBool      isascii;

1024:   PetscFunctionBegin;
1025:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii));
1026:   if (isascii) {
1027:     if (!cyclic->eps) PetscCall(SVDCyclicGetEPS(svd,&cyclic->eps));
1028:     PetscCall(PetscViewerASCIIPrintf(viewer,"  %s matrix\n",cyclic->explicitmatrix?"explicit":"implicit"));
1029:     PetscCall(PetscViewerASCIIPushTab(viewer));
1030:     PetscCall(EPSView(cyclic->eps,viewer));
1031:     PetscCall(PetscViewerASCIIPopTab(viewer));
1032:   }
1033:   PetscFunctionReturn(PETSC_SUCCESS);
1034: }

1036: static PetscErrorCode SVDReset_Cyclic(SVD svd)
1037: {
1038:   SVD_CYCLIC     *cyclic = (SVD_CYCLIC*)svd->data;

1040:   PetscFunctionBegin;
1041:   PetscCall(EPSReset(cyclic->eps));
1042:   PetscCall(MatDestroy(&cyclic->C));
1043:   PetscCall(MatDestroy(&cyclic->D));
1044:   PetscFunctionReturn(PETSC_SUCCESS);
1045: }

1047: static PetscErrorCode SVDDestroy_Cyclic(SVD svd)
1048: {
1049:   SVD_CYCLIC     *cyclic = (SVD_CYCLIC*)svd->data;

1051:   PetscFunctionBegin;
1052:   PetscCall(EPSDestroy(&cyclic->eps));
1053:   PetscCall(PetscFree(svd->data));
1054:   PetscCall(PetscObjectComposeFunction((PetscObject)svd,"SVDCyclicSetEPS_C",NULL));
1055:   PetscCall(PetscObjectComposeFunction((PetscObject)svd,"SVDCyclicGetEPS_C",NULL));
1056:   PetscCall(PetscObjectComposeFunction((PetscObject)svd,"SVDCyclicSetExplicitMatrix_C",NULL));
1057:   PetscCall(PetscObjectComposeFunction((PetscObject)svd,"SVDCyclicGetExplicitMatrix_C",NULL));
1058:   PetscFunctionReturn(PETSC_SUCCESS);
1059: }

1061: SLEPC_EXTERN PetscErrorCode SVDCreate_Cyclic(SVD svd)
1062: {
1063:   SVD_CYCLIC     *cyclic;

1065:   PetscFunctionBegin;
1066:   PetscCall(PetscNew(&cyclic));
1067:   svd->data                = (void*)cyclic;
1068:   svd->ops->solve          = SVDSolve_Cyclic;
1069:   svd->ops->solveg         = SVDSolve_Cyclic;
1070:   svd->ops->solveh         = SVDSolve_Cyclic;
1071:   svd->ops->setup          = SVDSetUp_Cyclic;
1072:   svd->ops->setfromoptions = SVDSetFromOptions_Cyclic;
1073:   svd->ops->destroy        = SVDDestroy_Cyclic;
1074:   svd->ops->reset          = SVDReset_Cyclic;
1075:   svd->ops->view           = SVDView_Cyclic;
1076:   svd->ops->computevectors = SVDComputeVectors_Cyclic;
1077:   PetscCall(PetscObjectComposeFunction((PetscObject)svd,"SVDCyclicSetEPS_C",SVDCyclicSetEPS_Cyclic));
1078:   PetscCall(PetscObjectComposeFunction((PetscObject)svd,"SVDCyclicGetEPS_C",SVDCyclicGetEPS_Cyclic));
1079:   PetscCall(PetscObjectComposeFunction((PetscObject)svd,"SVDCyclicSetExplicitMatrix_C",SVDCyclicSetExplicitMatrix_Cyclic));
1080:   PetscCall(PetscObjectComposeFunction((PetscObject)svd,"SVDCyclicGetExplicitMatrix_C",SVDCyclicGetExplicitMatrix_Cyclic));
1081:   PetscFunctionReturn(PETSC_SUCCESS);
1082: }