Actual source code: epsopts.c

slepc-3.10.1 2018-10-23
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-2018, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    EPS routines related to options that can be set via the command-line
 12:    or procedurally.
 13: */

 15: #include <slepc/private/epsimpl.h>   /*I "slepceps.h" I*/
 16: #include <petscdraw.h>

 18: /*@C
 19:    EPSMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type
 20:    indicated by the user.

 22:    Collective on EPS

 24:    Input Parameters:
 25: +  eps      - the eigensolver context
 26: .  name     - the monitor option name
 27: .  help     - message indicating what monitoring is done
 28: .  manual   - manual page for the monitor
 29: .  monitor  - the monitor function, whose context is a PetscViewerAndFormat
 30: -  trackall - whether this monitor tracks all eigenvalues or not

 32:    Level: developer

 34: .seealso: EPSMonitorSet(), EPSSetTrackAll(), EPSConvMonitorSetFromOptions()
 35: @*/
 36: PetscErrorCode EPSMonitorSetFromOptions(EPS eps,const char name[],const char help[],const char manual[],PetscErrorCode (*monitor)(EPS,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,PetscViewerAndFormat*),PetscBool trackall)
 37: {
 38:   PetscErrorCode       ierr;
 39:   PetscBool            flg;
 40:   PetscViewer          viewer;
 41:   PetscViewerFormat    format;
 42:   PetscViewerAndFormat *vf;

 45:   PetscOptionsGetViewer(PetscObjectComm((PetscObject)eps),((PetscObject)eps)->prefix,name,&viewer,&format,&flg);
 46:   if (flg) {
 47:     PetscViewerAndFormatCreate(viewer,format,&vf);
 48:     PetscObjectDereference((PetscObject)viewer);
 49:     EPSMonitorSet(eps,(PetscErrorCode (*)(EPS,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,void*))monitor,vf,(PetscErrorCode (*)(void**))PetscViewerAndFormatDestroy);
 50:     if (trackall) {
 51:       EPSSetTrackAll(eps,PETSC_TRUE);
 52:     }
 53:   }
 54:   return(0);
 55: }

 57: /*@C
 58:    EPSConvMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type
 59:    indicated by the user (for monitors that only show iteration numbers of convergence).

 61:    Collective on EPS

 63:    Input Parameters:
 64: +  eps      - the eigensolver context
 65: .  name     - the monitor option name
 66: .  help     - message indicating what monitoring is done
 67: .  manual   - manual page for the monitor
 68: -  monitor  - the monitor function, whose context is a SlepcConvMonitor

 70:    Level: developer

 72: .seealso: EPSMonitorSet(), EPSMonitorSetFromOptions()
 73: @*/
 74: PetscErrorCode EPSConvMonitorSetFromOptions(EPS eps,const char name[],const char help[],const char manual[],PetscErrorCode (*monitor)(EPS,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,SlepcConvMonitor))
 75: {
 76:   PetscErrorCode    ierr;
 77:   PetscBool         flg;
 78:   PetscViewer       viewer;
 79:   PetscViewerFormat format;
 80:   SlepcConvMonitor  ctx;

 83:   PetscOptionsGetViewer(PetscObjectComm((PetscObject)eps),((PetscObject)eps)->prefix,name,&viewer,&format,&flg);
 84:   if (flg) {
 85:     SlepcConvMonitorCreate(viewer,format,&ctx);
 86:     PetscObjectDereference((PetscObject)viewer);
 87:     EPSMonitorSet(eps,(PetscErrorCode (*)(EPS,PetscInt,PetscInt,PetscScalar*,PetscScalar*,PetscReal*,PetscInt,void*))monitor,ctx,(PetscErrorCode (*)(void**))SlepcConvMonitorDestroy);
 88:   }
 89:   return(0);
 90: }

 92: /*@
 93:    EPSSetFromOptions - Sets EPS options from the options database.
 94:    This routine must be called before EPSSetUp() if the user is to be
 95:    allowed to set the solver type.

 97:    Collective on EPS

 99:    Input Parameters:
100: .  eps - the eigensolver context

102:    Notes:
103:    To see all options, run your program with the -help option.

105:    Level: beginner
106: @*/
107: PetscErrorCode EPSSetFromOptions(EPS eps)
108: {
110:   char           type[256];
111:   PetscBool      set,flg,flg1,flg2,flg3,purif;
112:   PetscReal      r,array[2]={0,0};
113:   PetscScalar    s;
114:   PetscInt       i,j,k;
115:   PetscDrawLG    lg;
116:   EPSBalance     bal;

120:   EPSRegisterAll();
121:   PetscObjectOptionsBegin((PetscObject)eps);
122:     PetscOptionsFList("-eps_type","Eigensolver method","EPSSetType",EPSList,(char*)(((PetscObject)eps)->type_name?((PetscObject)eps)->type_name:EPSKRYLOVSCHUR),type,256,&flg);
123:     if (flg) {
124:       EPSSetType(eps,type);
125:     } else if (!((PetscObject)eps)->type_name) {
126:       EPSSetType(eps,EPSKRYLOVSCHUR);
127:     }

129:     PetscOptionsBoolGroupBegin("-eps_hermitian","Hermitian eigenvalue problem","EPSSetProblemType",&flg);
130:     if (flg) { EPSSetProblemType(eps,EPS_HEP); }
131:     PetscOptionsBoolGroup("-eps_gen_hermitian","Generalized Hermitian eigenvalue problem","EPSSetProblemType",&flg);
132:     if (flg) { EPSSetProblemType(eps,EPS_GHEP); }
133:     PetscOptionsBoolGroup("-eps_non_hermitian","Non-Hermitian eigenvalue problem","EPSSetProblemType",&flg);
134:     if (flg) { EPSSetProblemType(eps,EPS_NHEP); }
135:     PetscOptionsBoolGroup("-eps_gen_non_hermitian","Generalized non-Hermitian eigenvalue problem","EPSSetProblemType",&flg);
136:     if (flg) { EPSSetProblemType(eps,EPS_GNHEP); }
137:     PetscOptionsBoolGroup("-eps_pos_gen_non_hermitian","Generalized non-Hermitian eigenvalue problem with positive semi-definite B","EPSSetProblemType",&flg);
138:     if (flg) { EPSSetProblemType(eps,EPS_PGNHEP); }
139:     PetscOptionsBoolGroupEnd("-eps_gen_indefinite","Generalized Hermitian-indefinite eigenvalue problem","EPSSetProblemType",&flg);
140:     if (flg) { EPSSetProblemType(eps,EPS_GHIEP); }

142:     PetscOptionsBoolGroupBegin("-eps_ritz","Rayleigh-Ritz extraction","EPSSetExtraction",&flg);
143:     if (flg) { EPSSetExtraction(eps,EPS_RITZ); }
144:     PetscOptionsBoolGroup("-eps_harmonic","Harmonic Ritz extraction","EPSSetExtraction",&flg);
145:     if (flg) { EPSSetExtraction(eps,EPS_HARMONIC); }
146:     PetscOptionsBoolGroup("-eps_harmonic_relative","Relative harmonic Ritz extraction","EPSSetExtraction",&flg);
147:     if (flg) { EPSSetExtraction(eps,EPS_HARMONIC_RELATIVE); }
148:     PetscOptionsBoolGroup("-eps_harmonic_right","Right harmonic Ritz extraction","EPSSetExtraction",&flg);
149:     if (flg) { EPSSetExtraction(eps,EPS_HARMONIC_RIGHT); }
150:     PetscOptionsBoolGroup("-eps_harmonic_largest","Largest harmonic Ritz extraction","EPSSetExtraction",&flg);
151:     if (flg) { EPSSetExtraction(eps,EPS_HARMONIC_LARGEST); }
152:     PetscOptionsBoolGroup("-eps_refined","Refined Ritz extraction","EPSSetExtraction",&flg);
153:     if (flg) { EPSSetExtraction(eps,EPS_REFINED); }
154:     PetscOptionsBoolGroupEnd("-eps_refined_harmonic","Refined harmonic Ritz extraction","EPSSetExtraction",&flg);
155:     if (flg) { EPSSetExtraction(eps,EPS_REFINED_HARMONIC); }

157:     bal = eps->balance;
158:     PetscOptionsEnum("-eps_balance","Balancing method","EPSSetBalance",EPSBalanceTypes,(PetscEnum)bal,(PetscEnum*)&bal,&flg1);
159:     j = eps->balance_its;
160:     PetscOptionsInt("-eps_balance_its","Number of iterations in balancing","EPSSetBalance",eps->balance_its,&j,&flg2);
161:     r = eps->balance_cutoff;
162:     PetscOptionsReal("-eps_balance_cutoff","Cutoff value in balancing","EPSSetBalance",eps->balance_cutoff,&r,&flg3);
163:     if (flg1 || flg2 || flg3) { EPSSetBalance(eps,bal,j,r); }

165:     i = eps->max_it? eps->max_it: PETSC_DEFAULT;
166:     PetscOptionsInt("-eps_max_it","Maximum number of iterations","EPSSetTolerances",eps->max_it,&i,&flg1);
167:     r = eps->tol;
168:     PetscOptionsReal("-eps_tol","Tolerance","EPSSetTolerances",eps->tol==PETSC_DEFAULT?SLEPC_DEFAULT_TOL:eps->tol,&r,&flg2);
169:     if (flg1 || flg2) { EPSSetTolerances(eps,r,i); }

171:     PetscOptionsBoolGroupBegin("-eps_conv_rel","Relative error convergence test","EPSSetConvergenceTest",&flg);
172:     if (flg) { EPSSetConvergenceTest(eps,EPS_CONV_REL); }
173:     PetscOptionsBoolGroup("-eps_conv_norm","Convergence test relative to the eigenvalue and the matrix norms","EPSSetConvergenceTest",&flg);
174:     if (flg) { EPSSetConvergenceTest(eps,EPS_CONV_NORM); }
175:     PetscOptionsBoolGroup("-eps_conv_abs","Absolute error convergence test","EPSSetConvergenceTest",&flg);
176:     if (flg) { EPSSetConvergenceTest(eps,EPS_CONV_ABS); }
177:     PetscOptionsBoolGroupEnd("-eps_conv_user","User-defined convergence test","EPSSetConvergenceTest",&flg);
178:     if (flg) { EPSSetConvergenceTest(eps,EPS_CONV_USER); }

180:     PetscOptionsBoolGroupBegin("-eps_stop_basic","Stop iteration if all eigenvalues converged or max_it reached","EPSSetStoppingTest",&flg);
181:     if (flg) { EPSSetStoppingTest(eps,EPS_STOP_BASIC); }
182:     PetscOptionsBoolGroupEnd("-eps_stop_user","User-defined stopping test","EPSSetStoppingTest",&flg);
183:     if (flg) { EPSSetStoppingTest(eps,EPS_STOP_USER); }

185:     i = eps->nev;
186:     PetscOptionsInt("-eps_nev","Number of eigenvalues to compute","EPSSetDimensions",eps->nev,&i,&flg1);
187:     j = eps->ncv? eps->ncv: PETSC_DEFAULT;
188:     PetscOptionsInt("-eps_ncv","Number of basis vectors","EPSSetDimensions",eps->ncv,&j,&flg2);
189:     k = eps->mpd? eps->mpd: PETSC_DEFAULT;
190:     PetscOptionsInt("-eps_mpd","Maximum dimension of projected problem","EPSSetDimensions",eps->mpd,&k,&flg3);
191:     if (flg1 || flg2 || flg3) { EPSSetDimensions(eps,i,j,k); }

193:     PetscOptionsBoolGroupBegin("-eps_largest_magnitude","Compute largest eigenvalues in magnitude","EPSSetWhichEigenpairs",&flg);
194:     if (flg) { EPSSetWhichEigenpairs(eps,EPS_LARGEST_MAGNITUDE); }
195:     PetscOptionsBoolGroup("-eps_smallest_magnitude","Compute smallest eigenvalues in magnitude","EPSSetWhichEigenpairs",&flg);
196:     if (flg) { EPSSetWhichEigenpairs(eps,EPS_SMALLEST_MAGNITUDE); }
197:     PetscOptionsBoolGroup("-eps_largest_real","Compute eigenvalues with largest real parts","EPSSetWhichEigenpairs",&flg);
198:     if (flg) { EPSSetWhichEigenpairs(eps,EPS_LARGEST_REAL); }
199:     PetscOptionsBoolGroup("-eps_smallest_real","Compute eigenvalues with smallest real parts","EPSSetWhichEigenpairs",&flg);
200:     if (flg) { EPSSetWhichEigenpairs(eps,EPS_SMALLEST_REAL); }
201:     PetscOptionsBoolGroup("-eps_largest_imaginary","Compute eigenvalues with largest imaginary parts","EPSSetWhichEigenpairs",&flg);
202:     if (flg) { EPSSetWhichEigenpairs(eps,EPS_LARGEST_IMAGINARY); }
203:     PetscOptionsBoolGroup("-eps_smallest_imaginary","Compute eigenvalues with smallest imaginary parts","EPSSetWhichEigenpairs",&flg);
204:     if (flg) { EPSSetWhichEigenpairs(eps,EPS_SMALLEST_IMAGINARY); }
205:     PetscOptionsBoolGroup("-eps_target_magnitude","Compute eigenvalues closest to target","EPSSetWhichEigenpairs",&flg);
206:     if (flg) { EPSSetWhichEigenpairs(eps,EPS_TARGET_MAGNITUDE); }
207:     PetscOptionsBoolGroup("-eps_target_real","Compute eigenvalues with real parts closest to target","EPSSetWhichEigenpairs",&flg);
208:     if (flg) { EPSSetWhichEigenpairs(eps,EPS_TARGET_REAL); }
209:     PetscOptionsBoolGroup("-eps_target_imaginary","Compute eigenvalues with imaginary parts closest to target","EPSSetWhichEigenpairs",&flg);
210:     if (flg) { EPSSetWhichEigenpairs(eps,EPS_TARGET_IMAGINARY); }
211:     PetscOptionsBoolGroupEnd("-eps_all","Compute all eigenvalues in an interval or a region","EPSSetWhichEigenpairs",&flg);
212:     if (flg) { EPSSetWhichEigenpairs(eps,EPS_ALL); }

214:     PetscOptionsScalar("-eps_target","Value of the target","EPSSetTarget",eps->target,&s,&flg);
215:     if (flg) {
216:       if (eps->which!=EPS_TARGET_REAL && eps->which!=EPS_TARGET_IMAGINARY) {
217:         EPSSetWhichEigenpairs(eps,EPS_TARGET_MAGNITUDE);
218:       }
219:       EPSSetTarget(eps,s);
220:     }

222:     k = 2;
223:     PetscOptionsRealArray("-eps_interval","Computational interval (two real values separated with a comma without spaces)","EPSSetInterval",array,&k,&flg);
224:     if (flg) {
225:       if (k<2) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_SIZ,"Must pass two values in -eps_interval (comma-separated without spaces)");
226:       EPSSetWhichEigenpairs(eps,EPS_ALL);
227:       EPSSetInterval(eps,array[0],array[1]);
228:     }

230:     PetscOptionsBool("-eps_true_residual","Compute true residuals explicitly","EPSSetTrueResidual",eps->trueres,&eps->trueres,NULL);
231:     PetscOptionsBool("-eps_purify","Postprocess eigenvectors for purification","EPSSetPurify",eps->purify,&purif,&flg);
232:     if (flg) { EPSSetPurify(eps,purif); }

234:     /* -----------------------------------------------------------------------*/
235:     /*
236:       Cancels all monitors hardwired into code before call to EPSSetFromOptions()
237:     */
238:     PetscOptionsBool("-eps_monitor_cancel","Remove any hardwired monitor routines","EPSMonitorCancel",PETSC_FALSE,&flg,&set);
239:     if (set && flg) {
240:       EPSMonitorCancel(eps);
241:     }
242:     /*
243:       Text monitors
244:     */
245:     EPSMonitorSetFromOptions(eps,"-eps_monitor","Monitor first unconverged approximate eigenvalue and error estimate","EPSMonitorFirst",EPSMonitorFirst,PETSC_FALSE);
246:     EPSConvMonitorSetFromOptions(eps,"-eps_monitor_conv","Monitor approximate eigenvalues and error estimates as they converge","EPSMonitorConverged",EPSMonitorConverged);
247:     EPSMonitorSetFromOptions(eps,"-eps_monitor_all","Monitor approximate eigenvalues and error estimates","EPSMonitorAll",EPSMonitorAll,PETSC_TRUE);
248:     /*
249:       Line graph monitors
250:     */
251:     PetscOptionsBool("-eps_monitor_lg","Monitor first unconverged approximate eigenvalue and error estimate graphically","EPSMonitorSet",PETSC_FALSE,&flg,&set);
252:     if (set && flg) {
253:       EPSMonitorLGCreate(PetscObjectComm((PetscObject)eps),NULL,"Error estimates",PETSC_DECIDE,PETSC_DECIDE,300,300,&lg);
254:       EPSMonitorSet(eps,EPSMonitorLG,lg,(PetscErrorCode (*)(void**))PetscDrawLGDestroy);
255:     }
256:     PetscOptionsBool("-eps_monitor_lg_all","Monitor error estimates graphically","EPSMonitorSet",PETSC_FALSE,&flg,&set);
257:     if (set && flg) {
258:       EPSMonitorLGCreate(PetscObjectComm((PetscObject)eps),NULL,"Error estimates",PETSC_DECIDE,PETSC_DECIDE,300,300,&lg);
259:       EPSMonitorSet(eps,EPSMonitorLGAll,lg,(PetscErrorCode (*)(void**))PetscDrawLGDestroy);
260:       EPSSetTrackAll(eps,PETSC_TRUE);
261:     }

263:     /* -----------------------------------------------------------------------*/
264:     PetscOptionsName("-eps_view","Print detailed information on solver used","EPSView",NULL);
265:     PetscOptionsName("-eps_view_vectors","View computed eigenvectors","EPSVectorsView",NULL);
266:     PetscOptionsName("-eps_view_values","View computed eigenvalues","EPSValuesView",NULL);
267:     PetscOptionsName("-eps_converged_reason","Print reason for convergence, and number of iterations","EPSReasonView",NULL);
268:     PetscOptionsName("-eps_error_absolute","Print absolute errors of each eigenpair","EPSErrorView",NULL);
269:     PetscOptionsName("-eps_error_relative","Print relative errors of each eigenpair","EPSErrorView",NULL);
270:     PetscOptionsName("-eps_error_backward","Print backward errors of each eigenpair","EPSErrorView",NULL);

272:     if (eps->ops->setfromoptions) {
273:       (*eps->ops->setfromoptions)(PetscOptionsObject,eps);
274:     }
275:     PetscObjectProcessOptionsHandlers(PetscOptionsObject,(PetscObject)eps);
276:   PetscOptionsEnd();

278:   if (!eps->V) { EPSGetBV(eps,&eps->V); }
279:   BVSetFromOptions(eps->V);
280:   if (!eps->rg) { EPSGetRG(eps,&eps->rg); }
281:   RGSetFromOptions(eps->rg);
282:   if (eps->useds) {
283:     if (!eps->ds) { EPSGetDS(eps,&eps->ds); }
284:     DSSetFromOptions(eps->ds);
285:   }
286:   if (!eps->st) { EPSGetST(eps,&eps->st); }
287:   EPSSetDefaultST(eps);
288:   STSetFromOptions(eps->st);
289:   return(0);
290: }

292: /*@C
293:    EPSGetTolerances - Gets the tolerance and maximum iteration count used
294:    by the EPS convergence tests.

296:    Not Collective

298:    Input Parameter:
299: .  eps - the eigensolver context

301:    Output Parameters:
302: +  tol - the convergence tolerance
303: -  maxits - maximum number of iterations

305:    Notes:
306:    The user can specify NULL for any parameter that is not needed.

308:    Level: intermediate

310: .seealso: EPSSetTolerances()
311: @*/
312: PetscErrorCode EPSGetTolerances(EPS eps,PetscReal *tol,PetscInt *maxits)
313: {
316:   if (tol)    *tol    = eps->tol;
317:   if (maxits) *maxits = eps->max_it;
318:   return(0);
319: }

321: /*@
322:    EPSSetTolerances - Sets the tolerance and maximum iteration count used
323:    by the EPS convergence tests.

325:    Logically Collective on EPS

327:    Input Parameters:
328: +  eps - the eigensolver context
329: .  tol - the convergence tolerance
330: -  maxits - maximum number of iterations to use

332:    Options Database Keys:
333: +  -eps_tol <tol> - Sets the convergence tolerance
334: -  -eps_max_it <maxits> - Sets the maximum number of iterations allowed

336:    Notes:
337:    Use PETSC_DEFAULT for either argument to assign a reasonably good value.

339:    Level: intermediate

341: .seealso: EPSGetTolerances()
342: @*/
343: PetscErrorCode EPSSetTolerances(EPS eps,PetscReal tol,PetscInt maxits)
344: {
349:   if (tol == PETSC_DEFAULT) {
350:     eps->tol   = PETSC_DEFAULT;
351:     eps->state = EPS_STATE_INITIAL;
352:   } else {
353:     if (tol <= 0.0) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of tol. Must be > 0");
354:     eps->tol = tol;
355:   }
356:   if (maxits == PETSC_DEFAULT || maxits == PETSC_DECIDE) {
357:     eps->max_it = 0;
358:     eps->state  = EPS_STATE_INITIAL;
359:   } else {
360:     if (maxits <= 0) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of maxits. Must be > 0");
361:     eps->max_it = maxits;
362:   }
363:   return(0);
364: }

366: /*@C
367:    EPSGetDimensions - Gets the number of eigenvalues to compute
368:    and the dimension of the subspace.

370:    Not Collective

372:    Input Parameter:
373: .  eps - the eigensolver context

375:    Output Parameters:
376: +  nev - number of eigenvalues to compute
377: .  ncv - the maximum dimension of the subspace to be used by the solver
378: -  mpd - the maximum dimension allowed for the projected problem

380:    Level: intermediate

382: .seealso: EPSSetDimensions()
383: @*/
384: PetscErrorCode EPSGetDimensions(EPS eps,PetscInt *nev,PetscInt *ncv,PetscInt *mpd)
385: {
388:   if (nev) *nev = eps->nev;
389:   if (ncv) *ncv = eps->ncv;
390:   if (mpd) *mpd = eps->mpd;
391:   return(0);
392: }

394: /*@
395:    EPSSetDimensions - Sets the number of eigenvalues to compute
396:    and the dimension of the subspace.

398:    Logically Collective on EPS

400:    Input Parameters:
401: +  eps - the eigensolver context
402: .  nev - number of eigenvalues to compute
403: .  ncv - the maximum dimension of the subspace to be used by the solver
404: -  mpd - the maximum dimension allowed for the projected problem

406:    Options Database Keys:
407: +  -eps_nev <nev> - Sets the number of eigenvalues
408: .  -eps_ncv <ncv> - Sets the dimension of the subspace
409: -  -eps_mpd <mpd> - Sets the maximum projected dimension

411:    Notes:
412:    Use PETSC_DEFAULT for ncv and mpd to assign a reasonably good value, which is
413:    dependent on the solution method.

415:    The parameters ncv and mpd are intimately related, so that the user is advised
416:    to set one of them at most. Normal usage is that
417:    (a) in cases where nev is small, the user sets ncv (a reasonable default is 2*nev); and
418:    (b) in cases where nev is large, the user sets mpd.

420:    The value of ncv should always be between nev and (nev+mpd), typically
421:    ncv=nev+mpd. If nev is not too large, mpd=nev is a reasonable choice, otherwise
422:    a smaller value should be used.

424:    When computing all eigenvalues in an interval, see EPSSetInterval(), these
425:    parameters lose relevance, and tuning must be done with
426:    EPSKrylovSchurSetDimensions().

428:    Level: intermediate

430: .seealso: EPSGetDimensions(), EPSSetInterval(), EPSKrylovSchurSetDimensions()
431: @*/
432: PetscErrorCode EPSSetDimensions(EPS eps,PetscInt nev,PetscInt ncv,PetscInt mpd)
433: {
439:   if (nev<1) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of nev. Must be > 0");
440:   eps->nev = nev;
441:   if (ncv == PETSC_DECIDE || ncv == PETSC_DEFAULT) {
442:     eps->ncv = 0;
443:   } else {
444:     if (ncv<1) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of ncv. Must be > 0");
445:     eps->ncv = ncv;
446:   }
447:   if (mpd == PETSC_DECIDE || mpd == PETSC_DEFAULT) {
448:     eps->mpd = 0;
449:   } else {
450:     if (mpd<1) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of mpd. Must be > 0");
451:     eps->mpd = mpd;
452:   }
453:   eps->state = EPS_STATE_INITIAL;
454:   return(0);
455: }

457: /*@
458:    EPSSetWhichEigenpairs - Specifies which portion of the spectrum is
459:    to be sought.

461:    Logically Collective on EPS

463:    Input Parameters:
464: +  eps   - eigensolver context obtained from EPSCreate()
465: -  which - the portion of the spectrum to be sought

467:    Possible values:
468:    The parameter 'which' can have one of these values

470: +     EPS_LARGEST_MAGNITUDE - largest eigenvalues in magnitude (default)
471: .     EPS_SMALLEST_MAGNITUDE - smallest eigenvalues in magnitude
472: .     EPS_LARGEST_REAL - largest real parts
473: .     EPS_SMALLEST_REAL - smallest real parts
474: .     EPS_LARGEST_IMAGINARY - largest imaginary parts
475: .     EPS_SMALLEST_IMAGINARY - smallest imaginary parts
476: .     EPS_TARGET_MAGNITUDE - eigenvalues closest to the target (in magnitude)
477: .     EPS_TARGET_REAL - eigenvalues with real part closest to target
478: .     EPS_TARGET_IMAGINARY - eigenvalues with imaginary part closest to target
479: .     EPS_ALL - all eigenvalues contained in a given interval or region
480: -     EPS_WHICH_USER - user defined ordering set with EPSSetEigenvalueComparison()

482:    Options Database Keys:
483: +   -eps_largest_magnitude - Sets largest eigenvalues in magnitude
484: .   -eps_smallest_magnitude - Sets smallest eigenvalues in magnitude
485: .   -eps_largest_real - Sets largest real parts
486: .   -eps_smallest_real - Sets smallest real parts
487: .   -eps_largest_imaginary - Sets largest imaginary parts
488: .   -eps_smallest_imaginary - Sets smallest imaginary parts
489: .   -eps_target_magnitude - Sets eigenvalues closest to target
490: .   -eps_target_real - Sets real parts closest to target
491: .   -eps_target_imaginary - Sets imaginary parts closest to target
492: -   -eps_all - Sets all eigenvalues in an interval or region

494:    Notes:
495:    Not all eigensolvers implemented in EPS account for all the possible values
496:    stated above. Also, some values make sense only for certain types of
497:    problems. If SLEPc is compiled for real numbers EPS_LARGEST_IMAGINARY
498:    and EPS_SMALLEST_IMAGINARY use the absolute value of the imaginary part
499:    for eigenvalue selection.

501:    The target is a scalar value provided with EPSSetTarget().

503:    The criterion EPS_TARGET_IMAGINARY is available only in case PETSc and
504:    SLEPc have been built with complex scalars.

506:    EPS_ALL is intended for use in combination with an interval (see
507:    EPSSetInterval()), when all eigenvalues within the interval are requested,
508:    or in the context of the CISS solver for computing all eigenvalues in a region.
509:    In those cases, the number of eigenvalues is unknown, so the nev parameter
510:    has a different sense, see EPSSetDimensions().

512:    Level: intermediate

514: .seealso: EPSGetWhichEigenpairs(), EPSSetTarget(), EPSSetInterval(),
515:           EPSSetDimensions(), EPSSetEigenvalueComparison(), EPSWhich
516: @*/
517: PetscErrorCode EPSSetWhichEigenpairs(EPS eps,EPSWhich which)
518: {
522:   switch (which) {
523:     case EPS_LARGEST_MAGNITUDE:
524:     case EPS_SMALLEST_MAGNITUDE:
525:     case EPS_LARGEST_REAL:
526:     case EPS_SMALLEST_REAL:
527:     case EPS_LARGEST_IMAGINARY:
528:     case EPS_SMALLEST_IMAGINARY:
529:     case EPS_TARGET_MAGNITUDE:
530:     case EPS_TARGET_REAL:
531: #if defined(PETSC_USE_COMPLEX)
532:     case EPS_TARGET_IMAGINARY:
533: #endif
534:     case EPS_ALL:
535:     case EPS_WHICH_USER:
536:       if (eps->which != which) {
537:         eps->state = EPS_STATE_INITIAL;
538:         eps->which = which;
539:       }
540:       break;
541:     default:
542:       SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'which' value");
543:   }
544:   return(0);
545: }

547: /*@
548:    EPSGetWhichEigenpairs - Returns which portion of the spectrum is to be
549:    sought.

551:    Not Collective

553:    Input Parameter:
554: .  eps - eigensolver context obtained from EPSCreate()

556:    Output Parameter:
557: .  which - the portion of the spectrum to be sought

559:    Notes:
560:    See EPSSetWhichEigenpairs() for possible values of 'which'.

562:    Level: intermediate

564: .seealso: EPSSetWhichEigenpairs(), EPSWhich
565: @*/
566: PetscErrorCode EPSGetWhichEigenpairs(EPS eps,EPSWhich *which)
567: {
571:   *which = eps->which;
572:   return(0);
573: }

575: /*@C
576:    EPSSetEigenvalueComparison - Specifies the eigenvalue comparison function
577:    when EPSSetWhichEigenpairs() is set to EPS_WHICH_USER.

579:    Logically Collective on EPS

581:    Input Parameters:
582: +  eps  - eigensolver context obtained from EPSCreate()
583: .  func - a pointer to the comparison function
584: -  ctx  - a context pointer (the last parameter to the comparison function)

586:    Calling Sequence of func:
587: $   func(PetscScalar ar,PetscScalar ai,PetscScalar br,PetscScalar bi,PetscInt *res,void *ctx)

589: +   ar     - real part of the 1st eigenvalue
590: .   ai     - imaginary part of the 1st eigenvalue
591: .   br     - real part of the 2nd eigenvalue
592: .   bi     - imaginary part of the 2nd eigenvalue
593: .   res    - result of comparison
594: -   ctx    - optional context, as set by EPSSetEigenvalueComparison()

596:    Note:
597:    The returning parameter 'res' can be
598: +  negative - if the 1st eigenvalue is preferred to the 2st one
599: .  zero     - if both eigenvalues are equally preferred
600: -  positive - if the 2st eigenvalue is preferred to the 1st one

602:    Level: advanced

604: .seealso: EPSSetWhichEigenpairs(), EPSWhich
605: @*/
606: PetscErrorCode EPSSetEigenvalueComparison(EPS eps,PetscErrorCode (*func)(PetscScalar,PetscScalar,PetscScalar,PetscScalar,PetscInt*,void*),void* ctx)
607: {
610:   eps->sc->comparison    = func;
611:   eps->sc->comparisonctx = ctx;
612:   eps->which             = EPS_WHICH_USER;
613:   return(0);
614: }

616: /*@C
617:    EPSSetArbitrarySelection - Specifies a function intended to look for
618:    eigenvalues according to an arbitrary selection criterion. This criterion
619:    can be based on a computation involving the current eigenvector approximation.

621:    Logically Collective on EPS

623:    Input Parameters:
624: +  eps  - eigensolver context obtained from EPSCreate()
625: .  func - a pointer to the evaluation function
626: -  ctx  - a context pointer (the last parameter to the evaluation function)

628:    Calling Sequence of func:
629: $   func(PetscScalar er,PetscScalar ei,Vec xr,Vec xi,PetscScalar *rr,PetscScalar *ri,void *ctx)

631: +   er     - real part of the current eigenvalue approximation
632: .   ei     - imaginary part of the current eigenvalue approximation
633: .   xr     - real part of the current eigenvector approximation
634: .   xi     - imaginary part of the current eigenvector approximation
635: .   rr     - result of evaluation (real part)
636: .   ri     - result of evaluation (imaginary part)
637: -   ctx    - optional context, as set by EPSSetArbitrarySelection()

639:    Notes:
640:    This provides a mechanism to select eigenpairs by evaluating a user-defined
641:    function. When a function has been provided, the default selection based on
642:    sorting the eigenvalues is replaced by the sorting of the results of this
643:    function (with the same sorting criterion given in EPSSetWhichEigenpairs()).

645:    For instance, suppose you want to compute those eigenvectors that maximize
646:    a certain computable expression. Then implement the computation using
647:    the arguments xr and xi, and return the result in rr. Then set the standard
648:    sorting by magnitude so that the eigenpair with largest value of rr is
649:    selected.

651:    This evaluation function is collective, that is, all processes call it and
652:    it can use collective operations; furthermore, the computed result must
653:    be the same in all processes.

655:    The result of func is expressed as a complex number so that it is possible to
656:    use the standard eigenvalue sorting functions, but normally only rr is used.
657:    Set ri to zero unless it is meaningful in your application.

659:    Level: advanced

661: .seealso: EPSSetWhichEigenpairs()
662: @*/
663: PetscErrorCode EPSSetArbitrarySelection(EPS eps,PetscErrorCode (*func)(PetscScalar,PetscScalar,Vec,Vec,PetscScalar*,PetscScalar*,void*),void* ctx)
664: {
667:   eps->arbitrary    = func;
668:   eps->arbitraryctx = ctx;
669:   eps->state        = EPS_STATE_INITIAL;
670:   return(0);
671: }

673: /*@C
674:    EPSSetConvergenceTestFunction - Sets a function to compute the error estimate
675:    used in the convergence test.

677:    Logically Collective on EPS

679:    Input Parameters:
680: +  eps     - eigensolver context obtained from EPSCreate()
681: .  func    - a pointer to the convergence test function
682: .  ctx     - context for private data for the convergence routine (may be null)
683: -  destroy - a routine for destroying the context (may be null)

685:    Calling Sequence of func:
686: $   func(EPS eps,PetscScalar eigr,PetscScalar eigi,PetscReal res,PetscReal *errest,void *ctx)

688: +   eps    - eigensolver context obtained from EPSCreate()
689: .   eigr   - real part of the eigenvalue
690: .   eigi   - imaginary part of the eigenvalue
691: .   res    - residual norm associated to the eigenpair
692: .   errest - (output) computed error estimate
693: -   ctx    - optional context, as set by EPSSetConvergenceTestFunction()

695:    Note:
696:    If the error estimate returned by the convergence test function is less than
697:    the tolerance, then the eigenvalue is accepted as converged.

699:    Level: advanced

701: .seealso: EPSSetConvergenceTest(), EPSSetTolerances()
702: @*/
703: PetscErrorCode EPSSetConvergenceTestFunction(EPS eps,PetscErrorCode (*func)(EPS,PetscScalar,PetscScalar,PetscReal,PetscReal*,void*),void* ctx,PetscErrorCode (*destroy)(void*))
704: {

709:   if (eps->convergeddestroy) {
710:     (*eps->convergeddestroy)(eps->convergedctx);
711:   }
712:   eps->convergeduser    = func;
713:   eps->convergeddestroy = destroy;
714:   eps->convergedctx     = ctx;
715:   if (func == EPSConvergedRelative) eps->conv = EPS_CONV_REL;
716:   else if (func == EPSConvergedNorm) eps->conv = EPS_CONV_NORM;
717:   else if (func == EPSConvergedAbsolute) eps->conv = EPS_CONV_ABS;
718:   else {
719:     eps->conv      = EPS_CONV_USER;
720:     eps->converged = eps->convergeduser;
721:   }
722:   return(0);
723: }

725: /*@
726:    EPSSetConvergenceTest - Specifies how to compute the error estimate
727:    used in the convergence test.

729:    Logically Collective on EPS

731:    Input Parameters:
732: +  eps  - eigensolver context obtained from EPSCreate()
733: -  conv - the type of convergence test

735:    Options Database Keys:
736: +  -eps_conv_abs  - Sets the absolute convergence test
737: .  -eps_conv_rel  - Sets the convergence test relative to the eigenvalue
738: .  -eps_conv_norm - Sets the convergence test relative to the matrix norms
739: -  -eps_conv_user - Selects the user-defined convergence test

741:    Note:
742:    The parameter 'conv' can have one of these values
743: +     EPS_CONV_ABS  - absolute error ||r||
744: .     EPS_CONV_REL  - error relative to the eigenvalue l, ||r||/|l|
745: .     EPS_CONV_NORM - error relative to the matrix norms, ||r||/(||A||+|l|*||B||)
746: -     EPS_CONV_USER - function set by EPSSetConvergenceTestFunction()

748:    Level: intermediate

750: .seealso: EPSGetConvergenceTest(), EPSSetConvergenceTestFunction(), EPSSetStoppingTest(), EPSConv
751: @*/
752: PetscErrorCode EPSSetConvergenceTest(EPS eps,EPSConv conv)
753: {
757:   switch (conv) {
758:     case EPS_CONV_ABS:  eps->converged = EPSConvergedAbsolute; break;
759:     case EPS_CONV_REL:  eps->converged = EPSConvergedRelative; break;
760:     case EPS_CONV_NORM: eps->converged = EPSConvergedNorm; break;
761:     case EPS_CONV_USER:
762:       if (!eps->convergeduser) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ORDER,"Must call EPSSetConvergenceTestFunction() first");
763:       eps->converged = eps->convergeduser;
764:       break;
765:     default:
766:       SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'conv' value");
767:   }
768:   eps->conv = conv;
769:   return(0);
770: }

772: /*@
773:    EPSGetConvergenceTest - Gets the method used to compute the error estimate
774:    used in the convergence test.

776:    Not Collective

778:    Input Parameters:
779: .  eps   - eigensolver context obtained from EPSCreate()

781:    Output Parameters:
782: .  conv  - the type of convergence test

784:    Level: intermediate

786: .seealso: EPSSetConvergenceTest(), EPSConv
787: @*/
788: PetscErrorCode EPSGetConvergenceTest(EPS eps,EPSConv *conv)
789: {
793:   *conv = eps->conv;
794:   return(0);
795: }

797: /*@C
798:    EPSSetStoppingTestFunction - Sets a function to decide when to stop the outer
799:    iteration of the eigensolver.

801:    Logically Collective on EPS

803:    Input Parameters:
804: +  eps     - eigensolver context obtained from EPSCreate()
805: .  func    - pointer to the stopping test function
806: .  ctx     - context for private data for the stopping routine (may be null)
807: -  destroy - a routine for destroying the context (may be null)

809:    Calling Sequence of func:
810: $   func(EPS eps,PetscInt its,PetscInt max_it,PetscInt nconv,PetscInt nev,EPSConvergedReason *reason,void *ctx)

812: +   eps    - eigensolver context obtained from EPSCreate()
813: .   its    - current number of iterations
814: .   max_it - maximum number of iterations
815: .   nconv  - number of currently converged eigenpairs
816: .   nev    - number of requested eigenpairs
817: .   reason - (output) result of the stopping test
818: -   ctx    - optional context, as set by EPSSetStoppingTestFunction()

820:    Note:
821:    Normal usage is to first call the default routine EPSStoppingBasic() and then
822:    set reason to EPS_CONVERGED_USER if some user-defined conditions have been
823:    met. To let the eigensolver continue iterating, the result must be left as
824:    EPS_CONVERGED_ITERATING.

826:    Level: advanced

828: .seealso: EPSSetStoppingTest(), EPSStoppingBasic()
829: @*/
830: PetscErrorCode EPSSetStoppingTestFunction(EPS eps,PetscErrorCode (*func)(EPS,PetscInt,PetscInt,PetscInt,PetscInt,EPSConvergedReason*,void*),void* ctx,PetscErrorCode (*destroy)(void*))
831: {

836:   if (eps->stoppingdestroy) {
837:     (*eps->stoppingdestroy)(eps->stoppingctx);
838:   }
839:   eps->stoppinguser    = func;
840:   eps->stoppingdestroy = destroy;
841:   eps->stoppingctx     = ctx;
842:   if (func == EPSStoppingBasic) eps->stop = EPS_STOP_BASIC;
843:   else {
844:     eps->stop     = EPS_STOP_USER;
845:     eps->stopping = eps->stoppinguser;
846:   }
847:   return(0);
848: }

850: /*@
851:    EPSSetStoppingTest - Specifies how to decide the termination of the outer
852:    loop of the eigensolver.

854:    Logically Collective on EPS

856:    Input Parameters:
857: +  eps  - eigensolver context obtained from EPSCreate()
858: -  stop - the type of stopping test

860:    Options Database Keys:
861: +  -eps_stop_basic - Sets the default stopping test
862: -  -eps_stop_user  - Selects the user-defined stopping test

864:    Note:
865:    The parameter 'stop' can have one of these values
866: +     EPS_STOP_BASIC - default stopping test
867: -     EPS_STOP_USER  - function set by EPSSetStoppingTestFunction()

869:    Level: advanced

871: .seealso: EPSGetStoppingTest(), EPSSetStoppingTestFunction(), EPSSetConvergenceTest(), EPSStop
872: @*/
873: PetscErrorCode EPSSetStoppingTest(EPS eps,EPSStop stop)
874: {
878:   switch (stop) {
879:     case EPS_STOP_BASIC: eps->stopping = EPSStoppingBasic; break;
880:     case EPS_STOP_USER:
881:       if (!eps->stoppinguser) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ORDER,"Must call EPSSetStoppingTestFunction() first");
882:       eps->stopping = eps->stoppinguser;
883:       break;
884:     default:
885:       SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid 'stop' value");
886:   }
887:   eps->stop = stop;
888:   return(0);
889: }

891: /*@
892:    EPSGetStoppingTest - Gets the method used to decide the termination of the outer
893:    loop of the eigensolver.

895:    Not Collective

897:    Input Parameters:
898: .  eps   - eigensolver context obtained from EPSCreate()

900:    Output Parameters:
901: .  stop  - the type of stopping test

903:    Level: advanced

905: .seealso: EPSSetStoppingTest(), EPSStop
906: @*/
907: PetscErrorCode EPSGetStoppingTest(EPS eps,EPSStop *stop)
908: {
912:   *stop = eps->stop;
913:   return(0);
914: }

916: /*@
917:    EPSSetProblemType - Specifies the type of the eigenvalue problem.

919:    Logically Collective on EPS

921:    Input Parameters:
922: +  eps      - the eigensolver context
923: -  type     - a known type of eigenvalue problem

925:    Options Database Keys:
926: +  -eps_hermitian - Hermitian eigenvalue problem
927: .  -eps_gen_hermitian - generalized Hermitian eigenvalue problem
928: .  -eps_non_hermitian - non-Hermitian eigenvalue problem
929: .  -eps_gen_non_hermitian - generalized non-Hermitian eigenvalue problem
930: -  -eps_pos_gen_non_hermitian - generalized non-Hermitian eigenvalue problem
931:    with positive semi-definite B

933:    Notes:
934:    Allowed values for the problem type are: Hermitian (EPS_HEP), non-Hermitian
935:    (EPS_NHEP), generalized Hermitian (EPS_GHEP), generalized non-Hermitian
936:    (EPS_GNHEP), generalized non-Hermitian with positive semi-definite B
937:    (EPS_PGNHEP), and generalized Hermitian-indefinite (EPS_GHIEP).

939:    This function must be used to instruct SLEPc to exploit symmetry. If no
940:    problem type is specified, by default a non-Hermitian problem is assumed
941:    (either standard or generalized). If the user knows that the problem is
942:    Hermitian (i.e. A=A^H) or generalized Hermitian (i.e. A=A^H, B=B^H, and
943:    B positive definite) then it is recommended to set the problem type so
944:    that eigensolver can exploit these properties.

946:    Level: intermediate

948: .seealso: EPSSetOperators(), EPSSetType(), EPSGetProblemType(), EPSProblemType
949: @*/
950: PetscErrorCode EPSSetProblemType(EPS eps,EPSProblemType type)
951: {
955:   if (type == eps->problem_type) return(0);
956:   switch (type) {
957:     case EPS_HEP:
958:       eps->isgeneralized = PETSC_FALSE;
959:       eps->ishermitian = PETSC_TRUE;
960:       eps->ispositive = PETSC_FALSE;
961:       break;
962:     case EPS_NHEP:
963:       eps->isgeneralized = PETSC_FALSE;
964:       eps->ishermitian = PETSC_FALSE;
965:       eps->ispositive = PETSC_FALSE;
966:       break;
967:     case EPS_GHEP:
968:       eps->isgeneralized = PETSC_TRUE;
969:       eps->ishermitian = PETSC_TRUE;
970:       eps->ispositive = PETSC_TRUE;
971:       break;
972:     case EPS_GNHEP:
973:       eps->isgeneralized = PETSC_TRUE;
974:       eps->ishermitian = PETSC_FALSE;
975:       eps->ispositive = PETSC_FALSE;
976:       break;
977:     case EPS_PGNHEP:
978:       eps->isgeneralized = PETSC_TRUE;
979:       eps->ishermitian = PETSC_FALSE;
980:       eps->ispositive = PETSC_TRUE;
981:       break;
982:     case EPS_GHIEP:
983:       eps->isgeneralized = PETSC_TRUE;
984:       eps->ishermitian = PETSC_TRUE;
985:       eps->ispositive = PETSC_FALSE;
986:       break;
987:     default:
988:       SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONG,"Unknown eigenvalue problem type");
989:   }
990:   eps->problem_type = type;
991:   eps->state = EPS_STATE_INITIAL;
992:   return(0);
993: }

995: /*@
996:    EPSGetProblemType - Gets the problem type from the EPS object.

998:    Not Collective

1000:    Input Parameter:
1001: .  eps - the eigensolver context

1003:    Output Parameter:
1004: .  type - the problem type

1006:    Level: intermediate

1008: .seealso: EPSSetProblemType(), EPSProblemType
1009: @*/
1010: PetscErrorCode EPSGetProblemType(EPS eps,EPSProblemType *type)
1011: {
1015:   *type = eps->problem_type;
1016:   return(0);
1017: }

1019: /*@
1020:    EPSSetExtraction - Specifies the type of extraction technique to be employed
1021:    by the eigensolver.

1023:    Logically Collective on EPS

1025:    Input Parameters:
1026: +  eps  - the eigensolver context
1027: -  extr - a known type of extraction

1029:    Options Database Keys:
1030: +  -eps_ritz - Rayleigh-Ritz extraction
1031: .  -eps_harmonic - harmonic Ritz extraction
1032: .  -eps_harmonic_relative - harmonic Ritz extraction relative to the eigenvalue
1033: .  -eps_harmonic_right - harmonic Ritz extraction for rightmost eigenvalues
1034: .  -eps_harmonic_largest - harmonic Ritz extraction for largest magnitude
1035:    (without target)
1036: .  -eps_refined - refined Ritz extraction
1037: -  -eps_refined_harmonic - refined harmonic Ritz extraction

1039:    Notes:
1040:    Not all eigensolvers support all types of extraction. See the SLEPc
1041:    Users Manual for details.

1043:    By default, a standard Rayleigh-Ritz extraction is used. Other extractions
1044:    may be useful when computing interior eigenvalues.

1046:    Harmonic-type extractions are used in combination with a 'target'.

1048:    Level: advanced

1050: .seealso: EPSSetTarget(), EPSGetExtraction(), EPSExtraction
1051: @*/
1052: PetscErrorCode EPSSetExtraction(EPS eps,EPSExtraction extr)
1053: {
1057:   eps->extraction = extr;
1058:   return(0);
1059: }

1061: /*@
1062:    EPSGetExtraction - Gets the extraction type used by the EPS object.

1064:    Not Collective

1066:    Input Parameter:
1067: .  eps - the eigensolver context

1069:    Output Parameter:
1070: .  extr - name of extraction type

1072:    Level: advanced

1074: .seealso: EPSSetExtraction(), EPSExtraction
1075: @*/
1076: PetscErrorCode EPSGetExtraction(EPS eps,EPSExtraction *extr)
1077: {
1081:   *extr = eps->extraction;
1082:   return(0);
1083: }

1085: /*@
1086:    EPSSetBalance - Specifies the balancing technique to be employed by the
1087:    eigensolver, and some parameters associated to it.

1089:    Logically Collective on EPS

1091:    Input Parameters:
1092: +  eps    - the eigensolver context
1093: .  bal    - the balancing method, one of EPS_BALANCE_NONE, EPS_BALANCE_ONESIDE,
1094:             EPS_BALANCE_TWOSIDE, or EPS_BALANCE_USER
1095: .  its    - number of iterations of the balancing algorithm
1096: -  cutoff - cutoff value

1098:    Options Database Keys:
1099: +  -eps_balance <method> - the balancing method, where <method> is one of
1100:                            'none', 'oneside', 'twoside', or 'user'
1101: .  -eps_balance_its <its> - number of iterations
1102: -  -eps_balance_cutoff <cutoff> - cutoff value

1104:    Notes:
1105:    When balancing is enabled, the solver works implicitly with matrix DAD^-1,
1106:    where D is an appropriate diagonal matrix. This improves the accuracy of
1107:    the computed results in some cases. See the SLEPc Users Manual for details.

1109:    Balancing makes sense only for non-Hermitian problems when the required
1110:    precision is high (i.e. a small tolerance such as 1e-15).

1112:    By default, balancing is disabled. The two-sided method is much more
1113:    effective than the one-sided counterpart, but it requires the system
1114:    matrices to have the MatMultTranspose operation defined.

1116:    The parameter 'its' is the number of iterations performed by the method. The
1117:    cutoff value is used only in the two-side variant. Use PETSC_DEFAULT to assign
1118:    a reasonably good value.

1120:    User-defined balancing is allowed provided that the corresponding matrix
1121:    is set via STSetBalanceMatrix.

1123:    Level: intermediate

1125: .seealso: EPSGetBalance(), EPSBalance, STSetBalanceMatrix()
1126: @*/
1127: PetscErrorCode EPSSetBalance(EPS eps,EPSBalance bal,PetscInt its,PetscReal cutoff)
1128: {
1134:   switch (bal) {
1135:     case EPS_BALANCE_NONE:
1136:     case EPS_BALANCE_ONESIDE:
1137:     case EPS_BALANCE_TWOSIDE:
1138:     case EPS_BALANCE_USER:
1139:       if (eps->balance != bal) {
1140:         eps->state = EPS_STATE_INITIAL;
1141:         eps->balance = bal;
1142:       }
1143:       break;
1144:     default:
1145:       SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid value of argument 'bal'");
1146:   }
1147:   if (its==PETSC_DECIDE || its==PETSC_DEFAULT) eps->balance_its = 5;
1148:   else {
1149:     if (its <= 0) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of its. Must be > 0");
1150:     eps->balance_its = its;
1151:   }
1152:   if (cutoff==PETSC_DECIDE || cutoff==PETSC_DEFAULT) eps->balance_cutoff = 1e-8;
1153:   else {
1154:     if (cutoff <= 0.0) SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Illegal value of cutoff. Must be > 0");
1155:     eps->balance_cutoff = cutoff;
1156:   }
1157:   return(0);
1158: }

1160: /*@C
1161:    EPSGetBalance - Gets the balancing type used by the EPS object, and the
1162:    associated parameters.

1164:    Not Collective

1166:    Input Parameter:
1167: .  eps - the eigensolver context

1169:    Output Parameters:
1170: +  bal    - the balancing method
1171: .  its    - number of iterations of the balancing algorithm
1172: -  cutoff - cutoff value

1174:    Level: intermediate

1176:    Note:
1177:    The user can specify NULL for any parameter that is not needed.

1179: .seealso: EPSSetBalance(), EPSBalance
1180: @*/
1181: PetscErrorCode EPSGetBalance(EPS eps,EPSBalance *bal,PetscInt *its,PetscReal *cutoff)
1182: {
1185:   if (bal)    *bal = eps->balance;
1186:   if (its)    *its = eps->balance_its;
1187:   if (cutoff) *cutoff = eps->balance_cutoff;
1188:   return(0);
1189: }

1191: /*@
1192:    EPSSetTrueResidual - Specifies if the solver must compute the true residual
1193:    explicitly or not.

1195:    Logically Collective on EPS

1197:    Input Parameters:
1198: +  eps     - the eigensolver context
1199: -  trueres - whether true residuals are required or not

1201:    Options Database Keys:
1202: .  -eps_true_residual <boolean> - Sets/resets the boolean flag 'trueres'

1204:    Notes:
1205:    If the user sets trueres=PETSC_TRUE then the solver explicitly computes
1206:    the true residual for each eigenpair approximation, and uses it for
1207:    convergence testing. Computing the residual is usually an expensive
1208:    operation. Some solvers (e.g., Krylov solvers) can avoid this computation
1209:    by using a cheap estimate of the residual norm, but this may sometimes
1210:    give inaccurate results (especially if a spectral transform is being
1211:    used). On the contrary, preconditioned eigensolvers (e.g., Davidson solvers)
1212:    do rely on computing the true residual, so this option is irrelevant for them.

1214:    Level: advanced

1216: .seealso: EPSGetTrueResidual()
1217: @*/
1218: PetscErrorCode EPSSetTrueResidual(EPS eps,PetscBool trueres)
1219: {
1223:   eps->trueres = trueres;
1224:   return(0);
1225: }

1227: /*@
1228:    EPSGetTrueResidual - Returns the flag indicating whether true
1229:    residuals must be computed explicitly or not.

1231:    Not Collective

1233:    Input Parameter:
1234: .  eps - the eigensolver context

1236:    Output Parameter:
1237: .  trueres - the returned flag

1239:    Level: advanced

1241: .seealso: EPSSetTrueResidual()
1242: @*/
1243: PetscErrorCode EPSGetTrueResidual(EPS eps,PetscBool *trueres)
1244: {
1248:   *trueres = eps->trueres;
1249:   return(0);
1250: }

1252: /*@
1253:    EPSSetTrackAll - Specifies if the solver must compute the residual norm of all
1254:    approximate eigenpairs or not.

1256:    Logically Collective on EPS

1258:    Input Parameters:
1259: +  eps      - the eigensolver context
1260: -  trackall - whether to compute all residuals or not

1262:    Notes:
1263:    If the user sets trackall=PETSC_TRUE then the solver computes (or estimates)
1264:    the residual norm for each eigenpair approximation. Computing the residual is
1265:    usually an expensive operation and solvers commonly compute only the residual
1266:    associated to the first unconverged eigenpair.

1268:    The options '-eps_monitor_all' and '-eps_monitor_lg_all' automatically
1269:    activate this option.

1271:    Level: developer

1273: .seealso: EPSGetTrackAll()
1274: @*/
1275: PetscErrorCode EPSSetTrackAll(EPS eps,PetscBool trackall)
1276: {
1280:   eps->trackall = trackall;
1281:   return(0);
1282: }

1284: /*@
1285:    EPSGetTrackAll - Returns the flag indicating whether all residual norms must
1286:    be computed or not.

1288:    Not Collective

1290:    Input Parameter:
1291: .  eps - the eigensolver context

1293:    Output Parameter:
1294: .  trackall - the returned flag

1296:    Level: developer

1298: .seealso: EPSSetTrackAll()
1299: @*/
1300: PetscErrorCode EPSGetTrackAll(EPS eps,PetscBool *trackall)
1301: {
1305:   *trackall = eps->trackall;
1306:   return(0);
1307: }

1309: /*@
1310:    EPSSetPurify - Deactivate eigenvector purification (which is activated by default).

1312:    Logically Collective on EPS

1314:    Input Parameters:
1315: +  eps    - the eigensolver context
1316: -  purify - whether purification is required or not

1318:    Options Database Keys:
1319: .  -eps_purify <boolean> - Sets/resets the boolean flag 'purify'

1321:    Notes:
1322:    By default, eigenvectors of generalized symmetric eigenproblems are purified
1323:    in order to purge directions in the nullspace of matrix B. If the user knows
1324:    that B is non-singular, then purification can be safely deactivated and some
1325:    computational cost is avoided (this is particularly important in interval computations).

1327:    Level: intermediate

1329: .seealso: EPSGetPurify(), EPSSetInterval()
1330: @*/
1331: PetscErrorCode EPSSetPurify(EPS eps,PetscBool purify)
1332: {
1336:   eps->purify = purify;
1337:   if (purify && !eps->purify) eps->state = EPS_STATE_INITIAL;
1338:   return(0);
1339: }

1341: /*@
1342:    EPSGetPurify - Returns the flag indicating whether purification is activated
1343:    or not.

1345:    Not Collective

1347:    Input Parameter:
1348: .  eps - the eigensolver context

1350:    Output Parameter:
1351: .  purify - the returned flag

1353:    Level: intermediate

1355: .seealso: EPSSetPurify()
1356: @*/
1357: PetscErrorCode EPSGetPurify(EPS eps,PetscBool *purify)
1358: {
1362:   *purify = eps->purify;
1363:   return(0);
1364: }

1366: /*@C
1367:    EPSSetOptionsPrefix - Sets the prefix used for searching for all
1368:    EPS options in the database.

1370:    Logically Collective on EPS

1372:    Input Parameters:
1373: +  eps - the eigensolver context
1374: -  prefix - the prefix string to prepend to all EPS option requests

1376:    Notes:
1377:    A hyphen (-) must NOT be given at the beginning of the prefix name.
1378:    The first character of all runtime options is AUTOMATICALLY the
1379:    hyphen.

1381:    For example, to distinguish between the runtime options for two
1382:    different EPS contexts, one could call
1383: .vb
1384:       EPSSetOptionsPrefix(eps1,"eig1_")
1385:       EPSSetOptionsPrefix(eps2,"eig2_")
1386: .ve

1388:    Level: advanced

1390: .seealso: EPSAppendOptionsPrefix(), EPSGetOptionsPrefix()
1391: @*/
1392: PetscErrorCode EPSSetOptionsPrefix(EPS eps,const char *prefix)
1393: {

1398:   if (!eps->st) { EPSGetST(eps,&eps->st); }
1399:   STSetOptionsPrefix(eps->st,prefix);
1400:   if (!eps->V) { EPSGetBV(eps,&eps->V); }
1401:   BVSetOptionsPrefix(eps->V,prefix);
1402:   if (!eps->ds) { EPSGetDS(eps,&eps->ds); }
1403:   DSSetOptionsPrefix(eps->ds,prefix);
1404:   if (!eps->rg) { EPSGetRG(eps,&eps->rg); }
1405:   RGSetOptionsPrefix(eps->rg,prefix);
1406:   PetscObjectSetOptionsPrefix((PetscObject)eps,prefix);
1407:   return(0);
1408: }

1410: /*@C
1411:    EPSAppendOptionsPrefix - Appends to the prefix used for searching for all
1412:    EPS options in the database.

1414:    Logically Collective on EPS

1416:    Input Parameters:
1417: +  eps - the eigensolver context
1418: -  prefix - the prefix string to prepend to all EPS option requests

1420:    Notes:
1421:    A hyphen (-) must NOT be given at the beginning of the prefix name.
1422:    The first character of all runtime options is AUTOMATICALLY the hyphen.

1424:    Level: advanced

1426: .seealso: EPSSetOptionsPrefix(), EPSGetOptionsPrefix()
1427: @*/
1428: PetscErrorCode EPSAppendOptionsPrefix(EPS eps,const char *prefix)
1429: {

1434:   if (!eps->st) { EPSGetST(eps,&eps->st); }
1435:   STAppendOptionsPrefix(eps->st,prefix);
1436:   if (!eps->V) { EPSGetBV(eps,&eps->V); }
1437:   BVAppendOptionsPrefix(eps->V,prefix);
1438:   if (!eps->ds) { EPSGetDS(eps,&eps->ds); }
1439:   DSAppendOptionsPrefix(eps->ds,prefix);
1440:   if (!eps->rg) { EPSGetRG(eps,&eps->rg); }
1441:   RGAppendOptionsPrefix(eps->rg,prefix);
1442:   PetscObjectAppendOptionsPrefix((PetscObject)eps,prefix);
1443:   return(0);
1444: }

1446: /*@C
1447:    EPSGetOptionsPrefix - Gets the prefix used for searching for all
1448:    EPS options in the database.

1450:    Not Collective

1452:    Input Parameters:
1453: .  eps - the eigensolver context

1455:    Output Parameters:
1456: .  prefix - pointer to the prefix string used is returned

1458:    Note:
1459:    On the Fortran side, the user should pass in a string 'prefix' of
1460:    sufficient length to hold the prefix.

1462:    Level: advanced

1464: .seealso: EPSSetOptionsPrefix(), EPSAppendOptionsPrefix()
1465: @*/
1466: PetscErrorCode EPSGetOptionsPrefix(EPS eps,const char *prefix[])
1467: {

1473:   PetscObjectGetOptionsPrefix((PetscObject)eps,prefix);
1474:   return(0);
1475: }