Actual source code: ks-slice.c

slepc-3.21.1 2024-04-26
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    SLEPc eigensolver: "krylovschur"

 13:    Method: Krylov-Schur with spectrum slicing for symmetric eigenproblems

 15:    References:

 17:        [1] R.G. Grimes et al., "A shifted block Lanczos algorithm for
 18:            solving sparse symmetric generalized eigenproblems", SIAM J.
 19:            Matrix Anal. Appl. 15(1):228-272, 1994.

 21:        [2] C. Campos and J.E. Roman, "Spectrum slicing strategies based
 22:            on restarted Lanczos methods", Numer. Algor. 60(2):279-295,
 23:            2012.
 24: */

 26: #include <slepc/private/epsimpl.h>
 27: #include "krylovschur.h"

 29: static PetscBool  cited = PETSC_FALSE;
 30: static const char citation[] =
 31:   "@Article{slepc-slice,\n"
 32:   "   author = \"C. Campos and J. E. Roman\",\n"
 33:   "   title = \"Strategies for spectrum slicing based on restarted {Lanczos} methods\",\n"
 34:   "   journal = \"Numer. Algorithms\",\n"
 35:   "   volume = \"60\",\n"
 36:   "   number = \"2\",\n"
 37:   "   pages = \"279--295\",\n"
 38:   "   year = \"2012,\"\n"
 39:   "   doi = \"https://doi.org/10.1007/s11075-012-9564-z\"\n"
 40:   "}\n";

 42: #define SLICE_PTOL PETSC_SQRT_MACHINE_EPSILON

 44: static PetscErrorCode EPSSliceResetSR(EPS eps)
 45: {
 46:   EPS_KRYLOVSCHUR *ctx=(EPS_KRYLOVSCHUR*)eps->data;
 47:   EPS_SR          sr=ctx->sr;
 48:   EPS_shift       s;

 50:   PetscFunctionBegin;
 51:   if (sr) {
 52:     if (ctx->npart>1) {
 53:       PetscCall(BVDestroy(&sr->V));
 54:       PetscCall(PetscFree4(sr->eigr,sr->eigi,sr->errest,sr->perm));
 55:     }
 56:     /* Reviewing list of shifts to free memory */
 57:     s = sr->s0;
 58:     if (s) {
 59:       while (s->neighb[1]) {
 60:         s = s->neighb[1];
 61:         PetscCall(PetscFree(s->neighb[0]));
 62:       }
 63:       PetscCall(PetscFree(s));
 64:     }
 65:     PetscCall(PetscFree(sr));
 66:   }
 67:   ctx->sr = NULL;
 68:   PetscFunctionReturn(PETSC_SUCCESS);
 69: }

 71: PetscErrorCode EPSReset_KrylovSchur_Slice(EPS eps)
 72: {
 73:   EPS_KRYLOVSCHUR *ctx=(EPS_KRYLOVSCHUR*)eps->data;

 75:   PetscFunctionBegin;
 76:   if (!ctx->global) PetscFunctionReturn(PETSC_SUCCESS);
 77:   /* Reset auxiliary EPS */
 78:   PetscCall(EPSSliceResetSR(ctx->eps));
 79:   PetscCall(EPSReset(ctx->eps));
 80:   PetscCall(EPSSliceResetSR(eps));
 81:   PetscCall(PetscFree(ctx->inertias));
 82:   PetscCall(PetscFree(ctx->shifts));
 83:   PetscFunctionReturn(PETSC_SUCCESS);
 84: }

 86: PetscErrorCode EPSDestroy_KrylovSchur_Slice(EPS eps)
 87: {
 88:   EPS_KRYLOVSCHUR *ctx=(EPS_KRYLOVSCHUR*)eps->data;

 90:   PetscFunctionBegin;
 91:   if (!ctx->global) PetscFunctionReturn(PETSC_SUCCESS);
 92:   /* Destroy auxiliary EPS */
 93:   PetscCall(EPSReset_KrylovSchur_Slice(eps));
 94:   PetscCall(EPSDestroy(&ctx->eps));
 95:   if (ctx->npart>1) {
 96:     PetscCall(PetscSubcommDestroy(&ctx->subc));
 97:     if (ctx->commset) {
 98:       PetscCallMPI(MPI_Comm_free(&ctx->commrank));
 99:       ctx->commset = PETSC_FALSE;
100:     }
101:     PetscCall(ISDestroy(&ctx->isrow));
102:     PetscCall(ISDestroy(&ctx->iscol));
103:     PetscCall(MatDestroyMatrices(1,&ctx->submata));
104:     PetscCall(MatDestroyMatrices(1,&ctx->submatb));
105:   }
106:   PetscCall(PetscFree(ctx->subintervals));
107:   PetscCall(PetscFree(ctx->nconv_loc));
108:   PetscFunctionReturn(PETSC_SUCCESS);
109: }

111: /*
112:   EPSSliceAllocateSolution - Allocate memory storage for common variables such
113:   as eigenvalues and eigenvectors. The argument extra is used for methods
114:   that require a working basis slightly larger than ncv.
115: */
116: static PetscErrorCode EPSSliceAllocateSolution(EPS eps,PetscInt extra)
117: {
118:   EPS_KRYLOVSCHUR    *ctx=(EPS_KRYLOVSCHUR*)eps->data;
119:   PetscReal          eta;
120:   PetscInt           k;
121:   BVType             type;
122:   BVOrthogType       orthog_type;
123:   BVOrthogRefineType orthog_ref;
124:   BVOrthogBlockType  ob_type;
125:   Mat                matrix;
126:   Vec                t;
127:   EPS_SR             sr = ctx->sr;

129:   PetscFunctionBegin;
130:   /* allocate space for eigenvalues and friends */
131:   k = PetscMax(1,sr->numEigs);
132:   PetscCall(PetscFree4(sr->eigr,sr->eigi,sr->errest,sr->perm));
133:   PetscCall(PetscMalloc4(k,&sr->eigr,k,&sr->eigi,k,&sr->errest,k,&sr->perm));

135:   /* allocate sr->V and transfer options from eps->V */
136:   PetscCall(BVDestroy(&sr->V));
137:   PetscCall(BVCreate(PetscObjectComm((PetscObject)eps),&sr->V));
138:   if (!eps->V) PetscCall(EPSGetBV(eps,&eps->V));
139:   if (!((PetscObject)eps->V)->type_name) PetscCall(BVSetType(sr->V,BVMAT));
140:   else {
141:     PetscCall(BVGetType(eps->V,&type));
142:     PetscCall(BVSetType(sr->V,type));
143:   }
144:   PetscCall(STMatCreateVecsEmpty(eps->st,&t,NULL));
145:   PetscCall(BVSetSizesFromVec(sr->V,t,k));
146:   PetscCall(VecDestroy(&t));
147:   PetscCall(EPS_SetInnerProduct(eps));
148:   PetscCall(BVGetMatrix(eps->V,&matrix,NULL));
149:   PetscCall(BVSetMatrix(sr->V,matrix,PETSC_FALSE));
150:   PetscCall(BVGetOrthogonalization(eps->V,&orthog_type,&orthog_ref,&eta,&ob_type));
151:   PetscCall(BVSetOrthogonalization(sr->V,orthog_type,orthog_ref,eta,ob_type));
152:   PetscFunctionReturn(PETSC_SUCCESS);
153: }

155: static PetscErrorCode EPSSliceGetEPS(EPS eps)
156: {
157:   EPS_KRYLOVSCHUR    *ctx=(EPS_KRYLOVSCHUR*)eps->data,*ctx_local;
158:   BV                 V;
159:   BVType             type;
160:   PetscReal          eta;
161:   BVOrthogType       orthog_type;
162:   BVOrthogRefineType orthog_ref;
163:   BVOrthogBlockType  ob_type;
164:   PetscInt           i;
165:   PetscReal          h,a,b;
166:   PetscRandom        rand;
167:   EPS_SR             sr=ctx->sr;

169:   PetscFunctionBegin;
170:   if (!ctx->eps) PetscCall(EPSKrylovSchurGetChildEPS(eps,&ctx->eps));

172:   /* Determine subintervals */
173:   if (ctx->npart==1) {
174:     a = eps->inta; b = eps->intb;
175:   } else {
176:     if (!ctx->subintset) { /* uniform distribution if no set by user */
177:       PetscCheck(sr->hasEnd,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONG,"Global interval must be bounded for splitting it in uniform subintervals");
178:       h = (eps->intb-eps->inta)/ctx->npart;
179:       a = eps->inta+ctx->subc->color*h;
180:       b = (ctx->subc->color==ctx->npart-1)?eps->intb:eps->inta+(ctx->subc->color+1)*h;
181:       PetscCall(PetscFree(ctx->subintervals));
182:       PetscCall(PetscMalloc1(ctx->npart+1,&ctx->subintervals));
183:       for (i=0;i<ctx->npart;i++) ctx->subintervals[i] = eps->inta+h*i;
184:       ctx->subintervals[ctx->npart] = eps->intb;
185:     } else {
186:       a = ctx->subintervals[ctx->subc->color];
187:       b = ctx->subintervals[ctx->subc->color+1];
188:     }
189:   }
190:   PetscCall(EPSSetInterval(ctx->eps,a,b));
191:   PetscCall(EPSSetConvergenceTest(ctx->eps,eps->conv));
192:   PetscCall(EPSSetDimensions(ctx->eps,ctx->nev,ctx->ncv,ctx->mpd));
193:   PetscCall(EPSKrylovSchurSetLocking(ctx->eps,ctx->lock));

195:   ctx_local = (EPS_KRYLOVSCHUR*)ctx->eps->data;
196:   ctx_local->detect = ctx->detect;

198:   /* transfer options from eps->V */
199:   PetscCall(EPSGetBV(ctx->eps,&V));
200:   PetscCall(BVGetRandomContext(V,&rand));  /* make sure the random context is available when duplicating */
201:   if (!eps->V) PetscCall(EPSGetBV(eps,&eps->V));
202:   if (!((PetscObject)eps->V)->type_name) PetscCall(BVSetType(V,BVMAT));
203:   else {
204:     PetscCall(BVGetType(eps->V,&type));
205:     PetscCall(BVSetType(V,type));
206:   }
207:   PetscCall(BVGetOrthogonalization(eps->V,&orthog_type,&orthog_ref,&eta,&ob_type));
208:   PetscCall(BVSetOrthogonalization(V,orthog_type,orthog_ref,eta,ob_type));

210:   ctx->eps->which = eps->which;
211:   ctx->eps->max_it = eps->max_it;
212:   ctx->eps->tol = eps->tol;
213:   ctx->eps->purify = eps->purify;
214:   if (eps->tol==(PetscReal)PETSC_DEFAULT) eps->tol = SLEPC_DEFAULT_TOL;
215:   PetscCall(EPSSetProblemType(ctx->eps,eps->problem_type));
216:   PetscCall(EPSSetUp(ctx->eps));
217:   ctx->eps->nconv = 0;
218:   ctx->eps->its   = 0;
219:   for (i=0;i<ctx->eps->ncv;i++) {
220:     ctx->eps->eigr[i]   = 0.0;
221:     ctx->eps->eigi[i]   = 0.0;
222:     ctx->eps->errest[i] = 0.0;
223:   }
224:   PetscFunctionReturn(PETSC_SUCCESS);
225: }

227: static PetscErrorCode EPSSliceGetInertia(EPS eps,PetscReal shift,PetscInt *inertia,PetscInt *zeros)
228: {
229:   KSP            ksp,kspr;
230:   PC             pc;
231:   Mat            F;
232:   PetscReal      nzshift=shift;
233:   PetscBool      flg;

235:   PetscFunctionBegin;
236:   if (shift >= PETSC_MAX_REAL) { /* Right-open interval */
237:     if (inertia) *inertia = eps->n;
238:   } else if (shift <= PETSC_MIN_REAL) {
239:     if (inertia) *inertia = 0;
240:     if (zeros) *zeros = 0;
241:   } else {
242:     /* If the shift is zero, perturb it to a very small positive value.
243:        The goal is that the nonzero pattern is the same in all cases and reuse
244:        the symbolic factorizations */
245:     nzshift = (shift==0.0)? 10.0/PETSC_MAX_REAL: shift;
246:     PetscCall(STSetShift(eps->st,nzshift));
247:     PetscCall(STGetKSP(eps->st,&ksp));
248:     PetscCall(KSPGetPC(ksp,&pc));
249:     PetscCall(PetscObjectTypeCompare((PetscObject)pc,PCREDUNDANT,&flg));
250:     if (flg) {
251:       PetscCall(PCRedundantGetKSP(pc,&kspr));
252:       PetscCall(KSPGetPC(kspr,&pc));
253:     }
254:     PetscCall(PCFactorGetMatrix(pc,&F));
255:     PetscCall(MatGetInertia(F,inertia,zeros,NULL));
256:   }
257:   if (inertia) PetscCall(PetscInfo(eps,"Computed inertia at shift %g: %" PetscInt_FMT "\n",(double)nzshift,*inertia));
258:   PetscFunctionReturn(PETSC_SUCCESS);
259: }

261: /*
262:    Dummy backtransform operation
263:  */
264: static PetscErrorCode EPSBackTransform_Skip(EPS eps)
265: {
266:   PetscFunctionBegin;
267:   PetscFunctionReturn(PETSC_SUCCESS);
268: }

270: PetscErrorCode EPSSetUp_KrylovSchur_Slice(EPS eps)
271: {
272:   EPS_KRYLOVSCHUR *ctx = (EPS_KRYLOVSCHUR*)eps->data,*ctx_glob;
273:   EPS_SR          sr,sr_loc,sr_glob;
274:   PetscInt        nEigs,dssz=1,i,zeros=0,off=0,method,hiteig=0;
275:   PetscMPIInt     nproc,rank=0,aux;
276:   PetscReal       r;
277:   MPI_Request     req;
278:   Mat             A,B=NULL;
279:   DSParallelType  ptype;
280:   MPI_Comm        child;

282:   PetscFunctionBegin;
283:   if (ctx->global) {
284:     EPSCheckHermitianDefiniteCondition(eps,PETSC_TRUE," with spectrum slicing");
285:     EPSCheckSinvertCayleyCondition(eps,PETSC_TRUE," with spectrum slicing");
286:     PetscCheck(eps->inta!=eps->intb,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"This solver does not support computing all eigenvalues unless you provide a computational interval with EPSSetInterval()");
287:     PetscCheck(eps->intb<PETSC_MAX_REAL || eps->inta>PETSC_MIN_REAL,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONG,"The defined computational interval should have at least one of their sides bounded");
288:     PetscCheck(eps->nds==0,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Spectrum slicing not supported in combination with deflation space");
289:     EPSCheckUnsupportedCondition(eps,EPS_FEATURE_ARBITRARY | EPS_FEATURE_REGION | EPS_FEATURE_STOPPING,PETSC_TRUE," with spectrum slicing");
290:     EPSCheckIgnoredCondition(eps,EPS_FEATURE_BALANCE,PETSC_TRUE," with spectrum slicing");
291:     if (eps->tol==(PetscReal)PETSC_DEFAULT) {
292: #if defined(PETSC_USE_REAL_SINGLE)
293:       eps->tol = SLEPC_DEFAULT_TOL;
294: #else
295:       /* use tighter tolerance */
296:       eps->tol = SLEPC_DEFAULT_TOL*1e-2;
297: #endif
298:     }
299:     if (eps->max_it==PETSC_DEFAULT) eps->max_it = 100;
300:     if (ctx->nev==1) ctx->nev = PetscMin(40,eps->n);  /* nev not set, use default value */
301:     PetscCheck(eps->n<=10 || ctx->nev>=10,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONG,"nev cannot be less than 10 in spectrum slicing runs");
302:   }
303:   eps->ops->backtransform = EPSBackTransform_Skip;

305:   /* create spectrum slicing context and initialize it */
306:   PetscCall(EPSSliceResetSR(eps));
307:   PetscCall(PetscNew(&sr));
308:   ctx->sr = sr;
309:   sr->itsKs = 0;
310:   sr->nleap = 0;
311:   sr->nMAXCompl = eps->nev/4;
312:   sr->iterCompl = eps->max_it/4;
313:   sr->sPres = NULL;
314:   sr->nS = 0;

316:   if (ctx->npart==1 || ctx->global) {
317:     /* check presence of ends and finding direction */
318:     if ((eps->inta > PETSC_MIN_REAL && !(ctx->subintervals && ctx->subintervals[0]==ctx->subintervals[1])) || eps->intb >= PETSC_MAX_REAL) {
319:       sr->int0 = eps->inta;
320:       sr->int1 = eps->intb;
321:       sr->dir = 1;
322:       if (eps->intb >= PETSC_MAX_REAL) { /* Right-open interval */
323:         sr->hasEnd = PETSC_FALSE;
324:       } else sr->hasEnd = PETSC_TRUE;
325:     } else {
326:       sr->int0 = eps->intb;
327:       sr->int1 = eps->inta;
328:       sr->dir = -1;
329:       sr->hasEnd = PetscNot(eps->inta <= PETSC_MIN_REAL);
330:     }
331:   }
332:   if (ctx->global) {
333:     PetscCall(EPSSetDimensions_Default(eps,ctx->nev,&ctx->ncv,&ctx->mpd));
334:     /* create subintervals and initialize auxiliary eps for slicing runs */
335:     PetscCall(EPSKrylovSchurGetChildEPS(eps,&ctx->eps));
336:     /* prevent computation of factorization in global eps */
337:     PetscCall(STSetTransform(eps->st,PETSC_FALSE));
338:     PetscCall(EPSSliceGetEPS(eps));
339:     sr_loc = ((EPS_KRYLOVSCHUR*)ctx->eps->data)->sr;
340:     if (ctx->npart>1) {
341:       PetscCall(PetscSubcommGetChild(ctx->subc,&child));
342:       if ((sr->dir>0&&ctx->subc->color==0)||(sr->dir<0&&ctx->subc->color==ctx->npart-1)) sr->inertia0 = sr_loc->inertia0;
343:       PetscCallMPI(MPI_Comm_rank(child,&rank));
344:       if (!rank) PetscCallMPI(MPI_Bcast(&sr->inertia0,1,MPIU_INT,(sr->dir>0)?0:ctx->npart-1,ctx->commrank));
345:       PetscCallMPI(MPI_Bcast(&sr->inertia0,1,MPIU_INT,0,child));
346:       PetscCall(PetscFree(ctx->nconv_loc));
347:       PetscCall(PetscMalloc1(ctx->npart,&ctx->nconv_loc));
348:       PetscCallMPI(MPI_Comm_size(((PetscObject)eps)->comm,&nproc));
349:       if (sr->dir<0) off = 1;
350:       if (nproc%ctx->npart==0) { /* subcommunicators with the same size */
351:         PetscCall(PetscMPIIntCast(sr_loc->numEigs,&aux));
352:         PetscCallMPI(MPI_Allgather(&aux,1,MPI_INT,ctx->nconv_loc,1,MPI_INT,ctx->commrank));
353:         PetscCallMPI(MPI_Allgather(sr_loc->dir==sr->dir?&sr_loc->int0:&sr_loc->int1,1,MPIU_REAL,ctx->subintervals+off,1,MPIU_REAL,ctx->commrank));
354:       } else {
355:         PetscCallMPI(MPI_Comm_rank(child,&rank));
356:         if (!rank) {
357:           PetscCall(PetscMPIIntCast(sr_loc->numEigs,&aux));
358:           PetscCallMPI(MPI_Allgather(&aux,1,MPI_INT,ctx->nconv_loc,1,MPI_INT,ctx->commrank));
359:           PetscCallMPI(MPI_Allgather(sr_loc->dir==sr->dir?&sr_loc->int0:&sr_loc->int1,1,MPIU_REAL,ctx->subintervals+off,1,MPIU_REAL,ctx->commrank));
360:         }
361:         PetscCall(PetscMPIIntCast(ctx->npart,&aux));
362:         PetscCallMPI(MPI_Bcast(ctx->nconv_loc,aux,MPI_INT,0,child));
363:         PetscCallMPI(MPI_Bcast(ctx->subintervals+off,aux,MPIU_REAL,0,child));
364:       }
365:       nEigs = 0;
366:       for (i=0;i<ctx->npart;i++) nEigs += ctx->nconv_loc[i];
367:     } else {
368:       nEigs = sr_loc->numEigs;
369:       sr->inertia0 = sr_loc->inertia0;
370:       sr->dir = sr_loc->dir;
371:     }
372:     sr->inertia1 = sr->inertia0+sr->dir*nEigs;
373:     sr->numEigs = nEigs;
374:     eps->nev = nEigs;
375:     eps->ncv = nEigs;
376:     eps->mpd = nEigs;
377:   } else {
378:     ctx_glob = (EPS_KRYLOVSCHUR*)ctx->eps->data;
379:     sr_glob = ctx_glob->sr;
380:     if (ctx->npart>1) {
381:       sr->dir = sr_glob->dir;
382:       sr->int0 = (sr->dir==1)?eps->inta:eps->intb;
383:       sr->int1 = (sr->dir==1)?eps->intb:eps->inta;
384:       if ((sr->dir>0&&ctx->subc->color==ctx->npart-1)||(sr->dir<0&&ctx->subc->color==0)) sr->hasEnd = sr_glob->hasEnd;
385:       else sr->hasEnd = PETSC_TRUE;
386:     }
387:     /* sets first shift */
388:     PetscCall(STSetShift(eps->st,(sr->int0==0.0)?10.0/PETSC_MAX_REAL:sr->int0));
389:     PetscCall(STSetUp(eps->st));

391:     /* compute inertia0 */
392:     PetscCall(EPSSliceGetInertia(eps,sr->int0,&sr->inertia0,ctx->detect?&zeros:NULL));
393:     /* undocumented option to control what to do when an eigenvalue is found:
394:        - error out if it's the endpoint of the user-provided interval (or sub-interval)
395:        - if it's an endpoint computed internally:
396:           + if hiteig=0 error out
397:           + else if hiteig=1 the subgroup that hit the eigenvalue does nothing
398:           + otherwise the subgroup that hit the eigenvalue perturbs the shift and recomputes inertia
399:     */
400:     PetscCall(PetscOptionsGetInt(NULL,NULL,"-eps_krylovschur_hiteigenvalue",&hiteig,NULL));
401:     if (zeros) { /* error in factorization */
402:       PetscCheck(sr->int0!=ctx->eps->inta && sr->int0!=ctx->eps->intb,((PetscObject)eps)->comm,PETSC_ERR_USER,"Found singular matrix for the transformed problem in the interval endpoint");
403:       PetscCheck(!ctx_glob->subintset || hiteig,((PetscObject)eps)->comm,PETSC_ERR_USER,"Found singular matrix for the transformed problem in an interval endpoint defined by user");
404:       if (hiteig==1) { /* idle subgroup */
405:         sr->inertia0 = -1;
406:       } else { /* perturb shift */
407:         sr->int0 *= (1.0+SLICE_PTOL);
408:         PetscCall(EPSSliceGetInertia(eps,sr->int0,&sr->inertia0,&zeros));
409:         PetscCheck(zeros==0,((PetscObject)eps)->comm,PETSC_ERR_CONV_FAILED,"Inertia computation fails in %g",(double)sr->int1);
410:       }
411:     }
412:     if (ctx->npart>1) {
413:       PetscCall(PetscSubcommGetChild(ctx->subc,&child));
414:       /* inertia1 is received from neighbour */
415:       PetscCallMPI(MPI_Comm_rank(child,&rank));
416:       if (!rank) {
417:         if (sr->inertia0!=-1 && ((sr->dir>0 && ctx->subc->color>0) || (sr->dir<0 && ctx->subc->color<ctx->npart-1))) { /* send inertia0 to neighbour0 */
418:           PetscCallMPI(MPI_Isend(&sr->inertia0,1,MPIU_INT,ctx->subc->color-sr->dir,0,ctx->commrank,&req));
419:           PetscCallMPI(MPI_Isend(&sr->int0,1,MPIU_REAL,ctx->subc->color-sr->dir,0,ctx->commrank,&req));
420:         }
421:         if ((sr->dir>0 && ctx->subc->color<ctx->npart-1)|| (sr->dir<0 && ctx->subc->color>0)) { /* receive inertia1 from neighbour1 */
422:           PetscCallMPI(MPI_Recv(&sr->inertia1,1,MPIU_INT,ctx->subc->color+sr->dir,0,ctx->commrank,MPI_STATUS_IGNORE));
423:           PetscCallMPI(MPI_Recv(&sr->int1,1,MPIU_REAL,ctx->subc->color+sr->dir,0,ctx->commrank,MPI_STATUS_IGNORE));
424:         }
425:         if (sr->inertia0==-1 && !(sr->dir>0 && ctx->subc->color==ctx->npart-1) && !(sr->dir<0 && ctx->subc->color==0)) {
426:           sr->inertia0 = sr->inertia1; sr->int0 = sr->int1;
427:           PetscCallMPI(MPI_Isend(&sr->inertia0,1,MPIU_INT,ctx->subc->color-sr->dir,0,ctx->commrank,&req));
428:           PetscCallMPI(MPI_Isend(&sr->int0,1,MPIU_REAL,ctx->subc->color-sr->dir,0,ctx->commrank,&req));
429:         }
430:       }
431:       if ((sr->dir>0 && ctx->subc->color<ctx->npart-1)||(sr->dir<0 && ctx->subc->color>0)) {
432:         PetscCallMPI(MPI_Bcast(&sr->inertia1,1,MPIU_INT,0,child));
433:         PetscCallMPI(MPI_Bcast(&sr->int1,1,MPIU_REAL,0,child));
434:       } else sr_glob->inertia1 = sr->inertia1;
435:     }

437:     /* last process in eps comm computes inertia1 */
438:     if (ctx->npart==1 || ((sr->dir>0 && ctx->subc->color==ctx->npart-1) || (sr->dir<0 && ctx->subc->color==0))) {
439:       PetscCall(EPSSliceGetInertia(eps,sr->int1,&sr->inertia1,ctx->detect?&zeros:NULL));
440:       PetscCheck(zeros==0,((PetscObject)eps)->comm,PETSC_ERR_USER,"Found singular matrix for the transformed problem in an interval endpoint defined by user");
441:       if (!rank && sr->inertia0==-1) {
442:         sr->inertia0 = sr->inertia1; sr->int0 = sr->int1;
443:         PetscCallMPI(MPI_Isend(&sr->inertia0,1,MPIU_INT,ctx->subc->color-sr->dir,0,ctx->commrank,&req));
444:         PetscCallMPI(MPI_Isend(&sr->int0,1,MPIU_REAL,ctx->subc->color-sr->dir,0,ctx->commrank,&req));
445:       }
446:       if (sr->hasEnd) {
447:         sr->dir = -sr->dir; r = sr->int0; sr->int0 = sr->int1; sr->int1 = r;
448:         i = sr->inertia0; sr->inertia0 = sr->inertia1; sr->inertia1 = i;
449:       }
450:     }

452:     /* number of eigenvalues in interval */
453:     sr->numEigs = (sr->dir)*(sr->inertia1 - sr->inertia0);
454:     if (ctx->npart>1) {
455:       /* memory allocate for subinterval eigenpairs */
456:       PetscCall(EPSSliceAllocateSolution(eps,1));
457:     }
458:     dssz = eps->ncv+1;
459:     PetscCall(DSGetParallel(ctx->eps->ds,&ptype));
460:     PetscCall(DSSetParallel(eps->ds,ptype));
461:     PetscCall(DSGetMethod(ctx->eps->ds,&method));
462:     PetscCall(DSSetMethod(eps->ds,method));
463:   }
464:   PetscCall(DSSetType(eps->ds,DSHEP));
465:   PetscCall(DSSetCompact(eps->ds,PETSC_TRUE));
466:   PetscCall(DSAllocate(eps->ds,dssz));
467:   /* keep state of subcomm matrices to check that the user does not modify them */
468:   PetscCall(EPSGetOperators(eps,&A,&B));
469:   PetscCall(PetscObjectStateGet((PetscObject)A,&ctx->Astate));
470:   PetscCall(PetscObjectGetId((PetscObject)A,&ctx->Aid));
471:   if (B) {
472:     PetscCall(PetscObjectStateGet((PetscObject)B,&ctx->Bstate));
473:     PetscCall(PetscObjectGetId((PetscObject)B,&ctx->Bid));
474:   } else {
475:     ctx->Bstate=0;
476:     ctx->Bid=0;
477:   }
478:   PetscFunctionReturn(PETSC_SUCCESS);
479: }

481: static PetscErrorCode EPSSliceGatherEigenVectors(EPS eps)
482: {
483:   Vec             v,vg,v_loc;
484:   IS              is1,is2;
485:   VecScatter      vec_sc;
486:   EPS_KRYLOVSCHUR *ctx=(EPS_KRYLOVSCHUR*)eps->data;
487:   PetscInt        nloc,m0,n0,i,si,idx,*idx1,*idx2,j;
488:   PetscScalar     *array;
489:   EPS_SR          sr_loc;
490:   BV              V_loc;

492:   PetscFunctionBegin;
493:   sr_loc = ((EPS_KRYLOVSCHUR*)ctx->eps->data)->sr;
494:   V_loc = sr_loc->V;

496:   /* Gather parallel eigenvectors */
497:   PetscCall(BVGetColumn(eps->V,0,&v));
498:   PetscCall(VecGetOwnershipRange(v,&n0,&m0));
499:   PetscCall(BVRestoreColumn(eps->V,0,&v));
500:   PetscCall(BVGetColumn(ctx->eps->V,0,&v));
501:   PetscCall(VecGetLocalSize(v,&nloc));
502:   PetscCall(BVRestoreColumn(ctx->eps->V,0,&v));
503:   PetscCall(PetscMalloc2(m0-n0,&idx1,m0-n0,&idx2));
504:   PetscCall(VecCreateMPI(PetscObjectComm((PetscObject)eps),nloc,PETSC_DECIDE,&vg));
505:   idx = -1;
506:   for (si=0;si<ctx->npart;si++) {
507:     j = 0;
508:     for (i=n0;i<m0;i++) {
509:       idx1[j]   = i;
510:       idx2[j++] = i+eps->n*si;
511:     }
512:     PetscCall(ISCreateGeneral(PetscObjectComm((PetscObject)eps),(m0-n0),idx1,PETSC_COPY_VALUES,&is1));
513:     PetscCall(ISCreateGeneral(PetscObjectComm((PetscObject)eps),(m0-n0),idx2,PETSC_COPY_VALUES,&is2));
514:     PetscCall(BVGetColumn(eps->V,0,&v));
515:     PetscCall(VecScatterCreate(v,is1,vg,is2,&vec_sc));
516:     PetscCall(BVRestoreColumn(eps->V,0,&v));
517:     PetscCall(ISDestroy(&is1));
518:     PetscCall(ISDestroy(&is2));
519:     for (i=0;i<ctx->nconv_loc[si];i++) {
520:       PetscCall(BVGetColumn(eps->V,++idx,&v));
521:       if (ctx->subc->color==si) {
522:         PetscCall(BVGetColumn(V_loc,i,&v_loc));
523:         PetscCall(VecGetArray(v_loc,&array));
524:         PetscCall(VecPlaceArray(vg,array));
525:       }
526:       PetscCall(VecScatterBegin(vec_sc,vg,v,INSERT_VALUES,SCATTER_REVERSE));
527:       PetscCall(VecScatterEnd(vec_sc,vg,v,INSERT_VALUES,SCATTER_REVERSE));
528:       if (ctx->subc->color==si) {
529:         PetscCall(VecResetArray(vg));
530:         PetscCall(VecRestoreArray(v_loc,&array));
531:         PetscCall(BVRestoreColumn(V_loc,i,&v_loc));
532:       }
533:       PetscCall(BVRestoreColumn(eps->V,idx,&v));
534:     }
535:     PetscCall(VecScatterDestroy(&vec_sc));
536:   }
537:   PetscCall(PetscFree2(idx1,idx2));
538:   PetscCall(VecDestroy(&vg));
539:   PetscFunctionReturn(PETSC_SUCCESS);
540: }

542: /*
543:   EPSComputeVectors_Slice - Recover Eigenvectors from subcomunicators
544:  */
545: PetscErrorCode EPSComputeVectors_Slice(EPS eps)
546: {
547:   EPS_KRYLOVSCHUR *ctx=(EPS_KRYLOVSCHUR*)eps->data;

549:   PetscFunctionBegin;
550:   if (ctx->global && ctx->npart>1) {
551:     PetscCall(EPSComputeVectors(ctx->eps));
552:     PetscCall(EPSSliceGatherEigenVectors(eps));
553:   }
554:   PetscFunctionReturn(PETSC_SUCCESS);
555: }

557: #define SWAP(a,b,t) do {t=a;a=b;b=t;} while (0)

559: static PetscErrorCode EPSSliceGetInertias(EPS eps,PetscInt *n,PetscReal **shifts,PetscInt **inertias)
560: {
561:   EPS_KRYLOVSCHUR *ctx=(EPS_KRYLOVSCHUR*)eps->data;
562:   PetscInt        i=0,j,tmpi;
563:   PetscReal       v,tmpr;
564:   EPS_shift       s;

566:   PetscFunctionBegin;
567:   PetscCheck(eps->state,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONGSTATE,"Must call EPSSetUp() first");
568:   PetscCheck(ctx->sr,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONGSTATE,"Only available in interval computations, see EPSSetInterval()");
569:   if (!ctx->sr->s0) {  /* EPSSolve not called yet */
570:     *n = 2;
571:   } else {
572:     *n = 1;
573:     s = ctx->sr->s0;
574:     while (s) {
575:       (*n)++;
576:       s = s->neighb[1];
577:     }
578:   }
579:   PetscCall(PetscMalloc1(*n,shifts));
580:   PetscCall(PetscMalloc1(*n,inertias));
581:   if (!ctx->sr->s0) {  /* EPSSolve not called yet */
582:     (*shifts)[0]   = ctx->sr->int0;
583:     (*shifts)[1]   = ctx->sr->int1;
584:     (*inertias)[0] = ctx->sr->inertia0;
585:     (*inertias)[1] = ctx->sr->inertia1;
586:   } else {
587:     s = ctx->sr->s0;
588:     while (s) {
589:       (*shifts)[i]     = s->value;
590:       (*inertias)[i++] = s->inertia;
591:       s = s->neighb[1];
592:     }
593:     (*shifts)[i]   = ctx->sr->int1;
594:     (*inertias)[i] = ctx->sr->inertia1;
595:   }
596:   /* remove possible duplicate in last position */
597:   if ((*shifts)[(*n)-1]==(*shifts)[(*n)-2]) (*n)--;
598:   /* sort result */
599:   for (i=0;i<*n;i++) {
600:     v = (*shifts)[i];
601:     for (j=i+1;j<*n;j++) {
602:       if (v > (*shifts)[j]) {
603:         SWAP((*shifts)[i],(*shifts)[j],tmpr);
604:         SWAP((*inertias)[i],(*inertias)[j],tmpi);
605:         v = (*shifts)[i];
606:       }
607:     }
608:   }
609:   PetscFunctionReturn(PETSC_SUCCESS);
610: }

612: static PetscErrorCode EPSSliceGatherSolution(EPS eps)
613: {
614:   PetscMPIInt     rank,nproc,*disp,*ns_loc,aux;
615:   EPS_KRYLOVSCHUR *ctx=(EPS_KRYLOVSCHUR*)eps->data;
616:   PetscInt        i,idx,j,*perm_loc,off=0,*inertias_loc,ns;
617:   PetscScalar     *eigr_loc;
618:   EPS_SR          sr_loc;
619:   PetscReal       *shifts_loc;
620:   MPI_Comm        child;

622:   PetscFunctionBegin;
623:   eps->nconv = 0;
624:   for (i=0;i<ctx->npart;i++) eps->nconv += ctx->nconv_loc[i];
625:   sr_loc = ((EPS_KRYLOVSCHUR*)ctx->eps->data)->sr;

627:   /* Gather the shifts used and the inertias computed */
628:   PetscCall(EPSSliceGetInertias(ctx->eps,&ns,&shifts_loc,&inertias_loc));
629:   if (ctx->sr->dir>0 && shifts_loc[ns-1]==sr_loc->int1 && ctx->subc->color<ctx->npart-1) ns--;
630:   if (ctx->sr->dir<0 && shifts_loc[ns-1]==sr_loc->int0 && ctx->subc->color>0) {
631:     ns--;
632:     for (i=0;i<ns;i++) {
633:       inertias_loc[i] = inertias_loc[i+1];
634:       shifts_loc[i] = shifts_loc[i+1];
635:     }
636:   }
637:   PetscCall(PetscMalloc1(ctx->npart,&ns_loc));
638:   PetscCall(PetscSubcommGetChild(ctx->subc,&child));
639:   PetscCallMPI(MPI_Comm_rank(child,&rank));
640:   PetscCall(PetscMPIIntCast(ns,&aux));
641:   if (!rank) PetscCallMPI(MPI_Allgather(&aux,1,MPI_INT,ns_loc,1,MPI_INT,ctx->commrank));
642:   PetscCall(PetscMPIIntCast(ctx->npart,&aux));
643:   PetscCallMPI(MPI_Bcast(ns_loc,aux,MPI_INT,0,child));
644:   ctx->nshifts = 0;
645:   for (i=0;i<ctx->npart;i++) ctx->nshifts += ns_loc[i];
646:   PetscCall(PetscFree(ctx->inertias));
647:   PetscCall(PetscFree(ctx->shifts));
648:   PetscCall(PetscMalloc1(ctx->nshifts,&ctx->inertias));
649:   PetscCall(PetscMalloc1(ctx->nshifts,&ctx->shifts));

651:   /* Gather eigenvalues (same ranks have fully set of eigenvalues)*/
652:   eigr_loc = sr_loc->eigr;
653:   perm_loc = sr_loc->perm;
654:   PetscCallMPI(MPI_Comm_size(((PetscObject)eps)->comm,&nproc));
655:   PetscCall(PetscMalloc1(ctx->npart,&disp));
656:   disp[0] = 0;
657:   for (i=1;i<ctx->npart;i++) disp[i] = disp[i-1]+ctx->nconv_loc[i-1];
658:   if (nproc%ctx->npart==0) { /* subcommunicators with the same size */
659:     PetscCall(PetscMPIIntCast(sr_loc->numEigs,&aux));
660:     PetscCallMPI(MPI_Allgatherv(eigr_loc,aux,MPIU_SCALAR,eps->eigr,ctx->nconv_loc,disp,MPIU_SCALAR,ctx->commrank)); /* eigenvalues */
661:     PetscCallMPI(MPI_Allgatherv(perm_loc,aux,MPIU_INT,eps->perm,ctx->nconv_loc,disp,MPIU_INT,ctx->commrank)); /* perm */
662:     for (i=1;i<ctx->npart;i++) disp[i] = disp[i-1]+ns_loc[i-1];
663:     PetscCall(PetscMPIIntCast(ns,&aux));
664:     PetscCallMPI(MPI_Allgatherv(shifts_loc,aux,MPIU_REAL,ctx->shifts,ns_loc,disp,MPIU_REAL,ctx->commrank)); /* shifts */
665:     PetscCallMPI(MPI_Allgatherv(inertias_loc,aux,MPIU_INT,ctx->inertias,ns_loc,disp,MPIU_INT,ctx->commrank)); /* inertias */
666:     PetscCall(MPIU_Allreduce(&sr_loc->itsKs,&eps->its,1,MPIU_INT,MPI_SUM,ctx->commrank));
667:   } else { /* subcommunicators with different size */
668:     if (!rank) {
669:       PetscCall(PetscMPIIntCast(sr_loc->numEigs,&aux));
670:       PetscCallMPI(MPI_Allgatherv(eigr_loc,aux,MPIU_SCALAR,eps->eigr,ctx->nconv_loc,disp,MPIU_SCALAR,ctx->commrank)); /* eigenvalues */
671:       PetscCallMPI(MPI_Allgatherv(perm_loc,aux,MPIU_INT,eps->perm,ctx->nconv_loc,disp,MPIU_INT,ctx->commrank)); /* perm */
672:       for (i=1;i<ctx->npart;i++) disp[i] = disp[i-1]+ns_loc[i-1];
673:       PetscCall(PetscMPIIntCast(ns,&aux));
674:       PetscCallMPI(MPI_Allgatherv(shifts_loc,aux,MPIU_REAL,ctx->shifts,ns_loc,disp,MPIU_REAL,ctx->commrank)); /* shifts */
675:       PetscCallMPI(MPI_Allgatherv(inertias_loc,aux,MPIU_INT,ctx->inertias,ns_loc,disp,MPIU_INT,ctx->commrank)); /* inertias */
676:       PetscCall(MPIU_Allreduce(&sr_loc->itsKs,&eps->its,1,MPIU_INT,MPI_SUM,ctx->commrank));
677:     }
678:     PetscCall(PetscMPIIntCast(eps->nconv,&aux));
679:     PetscCallMPI(MPI_Bcast(eps->eigr,aux,MPIU_SCALAR,0,child));
680:     PetscCallMPI(MPI_Bcast(eps->perm,aux,MPIU_INT,0,child));
681:     PetscCallMPI(MPI_Bcast(ctx->shifts,ctx->nshifts,MPIU_REAL,0,child));
682:     PetscCall(PetscMPIIntCast(ctx->nshifts,&aux));
683:     PetscCallMPI(MPI_Bcast(ctx->inertias,aux,MPIU_INT,0,child));
684:     PetscCallMPI(MPI_Bcast(&eps->its,1,MPIU_INT,0,child));
685:   }
686:   /* Update global array eps->perm */
687:   idx = ctx->nconv_loc[0];
688:   for (i=1;i<ctx->npart;i++) {
689:     off += ctx->nconv_loc[i-1];
690:     for (j=0;j<ctx->nconv_loc[i];j++) eps->perm[idx++] += off;
691:   }

693:   /* Gather parallel eigenvectors */
694:   PetscCall(PetscFree(ns_loc));
695:   PetscCall(PetscFree(disp));
696:   PetscCall(PetscFree(shifts_loc));
697:   PetscCall(PetscFree(inertias_loc));
698:   PetscFunctionReturn(PETSC_SUCCESS);
699: }

701: /*
702:    Fills the fields of a shift structure
703: */
704: static PetscErrorCode EPSCreateShift(EPS eps,PetscReal val,EPS_shift neighb0,EPS_shift neighb1)
705: {
706:   EPS_shift       s,*pending2;
707:   PetscInt        i;
708:   EPS_SR          sr;
709:   EPS_KRYLOVSCHUR *ctx=(EPS_KRYLOVSCHUR*)eps->data;

711:   PetscFunctionBegin;
712:   sr = ctx->sr;
713:   if ((neighb0 && val==neighb0->value) || (neighb1 && val==neighb1->value)) {
714:     sr->nPend++;
715:     PetscFunctionReturn(PETSC_SUCCESS);
716:   }
717:   PetscCall(PetscNew(&s));
718:   s->value = val;
719:   s->neighb[0] = neighb0;
720:   if (neighb0) neighb0->neighb[1] = s;
721:   s->neighb[1] = neighb1;
722:   if (neighb1) neighb1->neighb[0] = s;
723:   s->comp[0] = PETSC_FALSE;
724:   s->comp[1] = PETSC_FALSE;
725:   s->index = -1;
726:   s->neigs = 0;
727:   s->nconv[0] = s->nconv[1] = 0;
728:   s->nsch[0] = s->nsch[1]=0;
729:   /* Inserts in the stack of pending shifts */
730:   /* If needed, the array is resized */
731:   if (sr->nPend >= sr->maxPend) {
732:     sr->maxPend *= 2;
733:     PetscCall(PetscMalloc1(sr->maxPend,&pending2));
734:     for (i=0;i<sr->nPend;i++) pending2[i] = sr->pending[i];
735:     PetscCall(PetscFree(sr->pending));
736:     sr->pending = pending2;
737:   }
738:   sr->pending[sr->nPend++]=s;
739:   PetscFunctionReturn(PETSC_SUCCESS);
740: }

742: /* Prepare for Rational Krylov update */
743: static PetscErrorCode EPSPrepareRational(EPS eps)
744: {
745:   EPS_KRYLOVSCHUR *ctx=(EPS_KRYLOVSCHUR*)eps->data;
746:   PetscInt        dir,i,k,ld,nv;
747:   PetscScalar     *A;
748:   EPS_SR          sr = ctx->sr;
749:   Vec             v;

751:   PetscFunctionBegin;
752:   PetscCall(DSGetLeadingDimension(eps->ds,&ld));
753:   dir = (sr->sPres->neighb[0] == sr->sPrev)?1:-1;
754:   dir*=sr->dir;
755:   k = 0;
756:   for (i=0;i<sr->nS;i++) {
757:     if (dir*PetscRealPart(sr->S[i])>0.0) {
758:       sr->S[k] = sr->S[i];
759:       sr->S[sr->nS+k] = sr->S[sr->nS+i];
760:       PetscCall(BVGetColumn(sr->Vnext,k,&v));
761:       PetscCall(BVCopyVec(eps->V,eps->nconv+i,v));
762:       PetscCall(BVRestoreColumn(sr->Vnext,k,&v));
763:       k++;
764:       if (k>=sr->nS/2)break;
765:     }
766:   }
767:   /* Copy to DS */
768:   PetscCall(DSGetArray(eps->ds,DS_MAT_A,&A));
769:   PetscCall(PetscArrayzero(A,ld*ld));
770:   for (i=0;i<k;i++) {
771:     A[i*(1+ld)] = sr->S[i];
772:     A[k+i*ld] = sr->S[sr->nS+i];
773:   }
774:   sr->nS = k;
775:   PetscCall(DSRestoreArray(eps->ds,DS_MAT_A,&A));
776:   PetscCall(DSGetDimensions(eps->ds,&nv,NULL,NULL,NULL));
777:   PetscCall(DSSetDimensions(eps->ds,nv,0,k));
778:   /* Append u to V */
779:   PetscCall(BVGetColumn(sr->Vnext,sr->nS,&v));
780:   PetscCall(BVCopyVec(eps->V,sr->nv,v));
781:   PetscCall(BVRestoreColumn(sr->Vnext,sr->nS,&v));
782:   PetscFunctionReturn(PETSC_SUCCESS);
783: }

785: /* Provides next shift to be computed */
786: static PetscErrorCode EPSExtractShift(EPS eps)
787: {
788:   PetscInt        iner,zeros=0;
789:   EPS_KRYLOVSCHUR *ctx=(EPS_KRYLOVSCHUR*)eps->data;
790:   EPS_SR          sr;
791:   PetscReal       newShift,diam,ptol;
792:   EPS_shift       sPres;

794:   PetscFunctionBegin;
795:   sr = ctx->sr;
796:   if (sr->nPend > 0) {
797:     if (sr->sPres==sr->pending[sr->nPend-1]) {
798:       eps->reason = EPS_CONVERGED_ITERATING;
799:       eps->its = 0;
800:       sr->nPend--;
801:       sr->sPres->rep = PETSC_TRUE;
802:       PetscFunctionReturn(PETSC_SUCCESS);
803:     }
804:     sr->sPrev = sr->sPres;
805:     sr->sPres = sr->pending[--sr->nPend];
806:     sPres = sr->sPres;
807:     PetscCall(EPSSliceGetInertia(eps,sPres->value,&iner,ctx->detect?&zeros:NULL));
808:     if (zeros) {
809:       diam = PetscMin(PetscAbsReal(sPres->neighb[0]->value-sPres->value),PetscAbsReal(sPres->neighb[1]->value-sPres->value));
810:       ptol = PetscMin(SLICE_PTOL,diam/2);
811:       newShift = sPres->value*(1.0+ptol);
812:       if (sr->dir*(sPres->neighb[0] && newShift-sPres->neighb[0]->value) < 0) newShift = (sPres->value+sPres->neighb[0]->value)/2;
813:       else if (sPres->neighb[1] && sr->dir*(sPres->neighb[1]->value-newShift) < 0) newShift = (sPres->value+sPres->neighb[1]->value)/2;
814:       PetscCall(EPSSliceGetInertia(eps,newShift,&iner,&zeros));
815:       PetscCheck(zeros==0,((PetscObject)eps)->comm,PETSC_ERR_CONV_FAILED,"Inertia computation fails in %g",(double)newShift);
816:       sPres->value = newShift;
817:     }
818:     sr->sPres->inertia = iner;
819:     eps->target = sr->sPres->value;
820:     eps->reason = EPS_CONVERGED_ITERATING;
821:     eps->its = 0;
822:   } else sr->sPres = NULL;
823:   PetscFunctionReturn(PETSC_SUCCESS);
824: }

826: /*
827:    Symmetric KrylovSchur adapted to spectrum slicing:
828:    Allows searching an specific amount of eigenvalues in the subintervals left and right.
829:    Returns whether the search has succeeded
830: */
831: static PetscErrorCode EPSKrylovSchur_Slice(EPS eps)
832: {
833:   EPS_KRYLOVSCHUR *ctx=(EPS_KRYLOVSCHUR*)eps->data;
834:   PetscInt        i,k,l,ld,nv,*iwork,j,count0,count1,iterCompl=0,n0,n1;
835:   Mat             U,Op,T;
836:   PetscScalar     *Q,*A;
837:   PetscReal       *a,*b,beta,lambda;
838:   EPS_shift       sPres;
839:   PetscBool       breakdown,complIterating,sch0,sch1;
840:   EPS_SR          sr = ctx->sr;

842:   PetscFunctionBegin;
843:   /* Spectrum slicing data */
844:   sPres = sr->sPres;
845:   complIterating =PETSC_FALSE;
846:   sch1 = sch0 = PETSC_TRUE;
847:   PetscCall(DSGetLeadingDimension(eps->ds,&ld));
848:   PetscCall(PetscMalloc1(2*ld,&iwork));
849:   count0=0;count1=0; /* Found on both sides */
850:   if (!sPres->rep && sr->nS > 0 && (sPres->neighb[0] == sr->sPrev || sPres->neighb[1] == sr->sPrev)) {
851:     /* Rational Krylov */
852:     PetscCall(DSTranslateRKS(eps->ds,sr->sPrev->value-sPres->value));
853:     PetscCall(DSGetDimensions(eps->ds,NULL,NULL,&l,NULL));
854:     PetscCall(DSSetDimensions(eps->ds,l+1,0,0));
855:     PetscCall(BVSetActiveColumns(eps->V,0,l+1));
856:     PetscCall(DSGetMat(eps->ds,DS_MAT_Q,&U));
857:     PetscCall(BVMultInPlace(eps->V,U,0,l+1));
858:     PetscCall(DSRestoreMat(eps->ds,DS_MAT_Q,&U));
859:   } else {
860:     /* Get the starting Lanczos vector */
861:     PetscCall(EPSGetStartVector(eps,0,NULL));
862:     l = 0;
863:   }
864:   /* Restart loop */
865:   while (eps->reason == EPS_CONVERGED_ITERATING) {
866:     eps->its++; sr->itsKs++;
867:     /* Compute an nv-step Lanczos factorization */
868:     nv = PetscMin(eps->nconv+eps->mpd,eps->ncv);
869:     PetscCall(DSSetDimensions(eps->ds,nv,eps->nconv,eps->nconv+l));
870:     PetscCall(DSGetMat(eps->ds,DS_MAT_T,&T));
871:     PetscCall(STGetOperator(eps->st,&Op));
872:     PetscCall(BVMatLanczos(eps->V,Op,T,eps->nconv+l,&nv,&beta,&breakdown));
873:     PetscCall(STRestoreOperator(eps->st,&Op));
874:     sr->nv = nv;
875:     PetscCall(DSRestoreMat(eps->ds,DS_MAT_T,&T));
876:     PetscCall(DSSetDimensions(eps->ds,nv,eps->nconv,eps->nconv+l));
877:     if (l==0) PetscCall(DSSetState(eps->ds,DS_STATE_INTERMEDIATE));
878:     else PetscCall(DSSetState(eps->ds,DS_STATE_RAW));
879:     PetscCall(BVSetActiveColumns(eps->V,eps->nconv,nv));

881:     /* Solve projected problem and compute residual norm estimates */
882:     if (eps->its == 1 && l > 0) {/* After rational update */
883:       PetscCall(DSGetArray(eps->ds,DS_MAT_A,&A));
884:       PetscCall(DSGetArrayReal(eps->ds,DS_MAT_T,&a));
885:       b = a + ld;
886:       k = eps->nconv+l;
887:       A[k*ld+k-1] = A[(k-1)*ld+k];
888:       A[k*ld+k] = a[k];
889:       for (j=k+1; j< nv; j++) {
890:         A[j*ld+j] = a[j];
891:         A[j*ld+j-1] = b[j-1] ;
892:         A[(j-1)*ld+j] = b[j-1];
893:       }
894:       PetscCall(DSRestoreArray(eps->ds,DS_MAT_A,&A));
895:       PetscCall(DSRestoreArrayReal(eps->ds,DS_MAT_T,&a));
896:       PetscCall(DSSolve(eps->ds,eps->eigr,NULL));
897:       PetscCall(DSSort(eps->ds,eps->eigr,NULL,NULL,NULL,NULL));
898:       PetscCall(DSSetCompact(eps->ds,PETSC_TRUE));
899:     } else { /* Restart */
900:       PetscCall(DSSolve(eps->ds,eps->eigr,NULL));
901:       PetscCall(DSSort(eps->ds,eps->eigr,NULL,NULL,NULL,NULL));
902:     }
903:     PetscCall(DSSynchronize(eps->ds,eps->eigr,NULL));

905:     /* Residual */
906:     PetscCall(EPSKrylovConvergence(eps,PETSC_TRUE,eps->nconv,nv-eps->nconv,beta,0.0,1.0,&k));
907:     /* Checking values obtained for completing */
908:     for (i=0;i<k;i++) {
909:       sr->back[i]=eps->eigr[i];
910:     }
911:     PetscCall(STBackTransform(eps->st,k,sr->back,eps->eigi));
912:     count0=count1=0;
913:     for (i=0;i<k;i++) {
914:       lambda = PetscRealPart(sr->back[i]);
915:       if ((sr->dir*(sPres->value - lambda) > 0) && (sr->dir*(lambda - sPres->ext[0]) > 0)) count0++;
916:       if ((sr->dir*(lambda - sPres->value) > 0) && (sr->dir*(sPres->ext[1] - lambda) > 0)) count1++;
917:     }
918:     if (k>eps->nev && eps->ncv-k<5) eps->reason = EPS_CONVERGED_TOL;
919:     else {
920:       /* Checks completion */
921:       if ((!sch0||count0 >= sPres->nsch[0]) && (!sch1 ||count1 >= sPres->nsch[1])) {
922:         eps->reason = EPS_CONVERGED_TOL;
923:       } else {
924:         if (!complIterating && eps->its >= eps->max_it) eps->reason = EPS_DIVERGED_ITS;
925:         if (complIterating) {
926:           if (--iterCompl <= 0) eps->reason = EPS_DIVERGED_ITS;
927:         } else if (k >= eps->nev) {
928:           n0 = sPres->nsch[0]-count0;
929:           n1 = sPres->nsch[1]-count1;
930:           if (sr->iterCompl>0 && ((n0>0 && n0<= sr->nMAXCompl)||(n1>0&&n1<=sr->nMAXCompl))) {
931:             /* Iterating for completion*/
932:             complIterating = PETSC_TRUE;
933:             if (n0 >sr->nMAXCompl)sch0 = PETSC_FALSE;
934:             if (n1 >sr->nMAXCompl)sch1 = PETSC_FALSE;
935:             iterCompl = sr->iterCompl;
936:           } else eps->reason = EPS_CONVERGED_TOL;
937:         }
938:       }
939:     }
940:     /* Update l */
941:     if (eps->reason == EPS_CONVERGED_ITERATING) l = PetscMax(1,(PetscInt)((nv-k)*ctx->keep));
942:     else l = nv-k;
943:     if (breakdown) l=0;
944:     if (!ctx->lock && l>0 && eps->reason == EPS_CONVERGED_ITERATING) { l += k; k = 0; } /* non-locking variant: reset no. of converged pairs */

946:     if (eps->reason == EPS_CONVERGED_ITERATING) {
947:       if (breakdown) {
948:         /* Start a new Lanczos factorization */
949:         PetscCall(PetscInfo(eps,"Breakdown in Krylov-Schur method (it=%" PetscInt_FMT " norm=%g)\n",eps->its,(double)beta));
950:         PetscCall(EPSGetStartVector(eps,k,&breakdown));
951:         if (breakdown) {
952:           eps->reason = EPS_DIVERGED_BREAKDOWN;
953:           PetscCall(PetscInfo(eps,"Unable to generate more start vectors\n"));
954:         }
955:       } else {
956:         /* Prepare the Rayleigh quotient for restart */
957:         PetscCall(DSGetArrayReal(eps->ds,DS_MAT_T,&a));
958:         PetscCall(DSGetArray(eps->ds,DS_MAT_Q,&Q));
959:         b = a + ld;
960:         for (i=k;i<k+l;i++) {
961:           a[i] = PetscRealPart(eps->eigr[i]);
962:           b[i] = PetscRealPart(Q[nv-1+i*ld]*beta);
963:         }
964:         PetscCall(DSRestoreArrayReal(eps->ds,DS_MAT_T,&a));
965:         PetscCall(DSRestoreArray(eps->ds,DS_MAT_Q,&Q));
966:       }
967:     }
968:     /* Update the corresponding vectors V(:,idx) = V*Q(:,idx) */
969:     PetscCall(DSGetMat(eps->ds,DS_MAT_Q,&U));
970:     PetscCall(BVMultInPlace(eps->V,U,eps->nconv,k+l));
971:     PetscCall(DSRestoreMat(eps->ds,DS_MAT_Q,&U));

973:     /* Normalize u and append it to V */
974:     if (eps->reason == EPS_CONVERGED_ITERATING && !breakdown) PetscCall(BVCopyColumn(eps->V,nv,k+l));
975:     eps->nconv = k;
976:     if (eps->reason != EPS_CONVERGED_ITERATING) {
977:       /* Store approximated values for next shift */
978:       PetscCall(DSGetArray(eps->ds,DS_MAT_Q,&Q));
979:       sr->nS = l;
980:       for (i=0;i<l;i++) {
981:         sr->S[i] = eps->eigr[i+k];/* Diagonal elements */
982:         sr->S[i+l] = Q[nv-1+(i+k)*ld]*beta; /* Out of diagonal elements */
983:       }
984:       PetscCall(DSRestoreArray(eps->ds,DS_MAT_Q,&Q));
985:     }
986:   }
987:   /* Check for completion */
988:   for (i=0;i< eps->nconv; i++) {
989:     if (sr->dir*PetscRealPart(eps->eigr[i])>0) sPres->nconv[1]++;
990:     else sPres->nconv[0]++;
991:   }
992:   sPres->comp[0] = PetscNot(count0 < sPres->nsch[0]);
993:   sPres->comp[1] = PetscNot(count1 < sPres->nsch[1]);
994:   PetscCall(PetscInfo(eps,"Lanczos: %" PetscInt_FMT " evals in [%g,%g]%s and %" PetscInt_FMT " evals in [%g,%g]%s\n",count0,(double)(sr->dir==1?sPres->ext[0]:sPres->value),(double)(sr->dir==1?sPres->value:sPres->ext[0]),sPres->comp[0]?"*":"",count1,(double)(sr->dir==1?sPres->value:sPres->ext[1]),(double)(sr->dir==1?sPres->ext[1]:sPres->value),sPres->comp[1]?"*":""));
995:   PetscCheck(count0<=sPres->nsch[0] && count1<=sPres->nsch[1],PetscObjectComm((PetscObject)eps),PETSC_ERR_PLIB,"Mismatch between number of values found and information from inertia%s",ctx->detect?"":", consider using EPSKrylovSchurSetDetectZeros()");
996:   PetscCall(PetscFree(iwork));
997:   PetscFunctionReturn(PETSC_SUCCESS);
998: }

1000: /*
1001:   Obtains value of subsequent shift
1002: */
1003: static PetscErrorCode EPSGetNewShiftValue(EPS eps,PetscInt side,PetscReal *newS)
1004: {
1005:   PetscReal       lambda,d_prev;
1006:   PetscInt        i,idxP;
1007:   EPS_SR          sr;
1008:   EPS_shift       sPres,s;
1009:   EPS_KRYLOVSCHUR *ctx=(EPS_KRYLOVSCHUR*)eps->data;

1011:   PetscFunctionBegin;
1012:   sr = ctx->sr;
1013:   sPres = sr->sPres;
1014:   if (sPres->neighb[side]) {
1015:     /* Completing a previous interval */
1016:     *newS = (sPres->value + sPres->neighb[side]->value)/2;
1017:     if (PetscAbsReal(sPres->value - *newS)/PetscAbsReal(sPres->value)<=100*PETSC_SQRT_MACHINE_EPSILON) *newS = sPres->value;
1018:   } else { /* (Only for side=1). Creating a new interval. */
1019:     if (sPres->neigs==0) {/* No value has been accepted*/
1020:       if (sPres->neighb[0]) {
1021:         /* Multiplying by 10 the previous distance */
1022:         *newS = sPres->value + 10*sr->dir*PetscAbsReal(sPres->value - sPres->neighb[0]->value);
1023:         sr->nleap++;
1024:         /* Stops when the interval is open and no values are found in the last 5 shifts (there might be infinite eigenvalues) */
1025:         PetscCheck(sr->hasEnd || sr->nleap<=5,PetscObjectComm((PetscObject)eps),PETSC_ERR_PLIB,"Unable to compute the wanted eigenvalues with open interval");
1026:       } else { /* First shift */
1027:         PetscCheck(eps->nconv!=0,PetscObjectComm((PetscObject)eps),PETSC_ERR_PLIB,"First shift renders no information");
1028:         /* Unaccepted values give information for next shift */
1029:         idxP=0;/* Number of values left from shift */
1030:         for (i=0;i<eps->nconv;i++) {
1031:           lambda = PetscRealPart(eps->eigr[i]);
1032:           if (sr->dir*(lambda - sPres->value) <0) idxP++;
1033:           else break;
1034:         }
1035:         /* Avoiding subtraction of eigenvalues (might be the same).*/
1036:         if (idxP>0) {
1037:           d_prev = PetscAbsReal(sPres->value - PetscRealPart(eps->eigr[0]))/(idxP+0.3);
1038:         } else {
1039:           d_prev = PetscAbsReal(sPres->value - PetscRealPart(eps->eigr[eps->nconv-1]))/(eps->nconv+0.3);
1040:         }
1041:         *newS = sPres->value + (sr->dir*d_prev*eps->nev)/2;
1042:       }
1043:     } else { /* Accepted values found */
1044:       sr->nleap = 0;
1045:       /* Average distance of values in previous subinterval */
1046:       s = sPres->neighb[0];
1047:       while (s && PetscAbs(s->inertia - sPres->inertia)==0) {
1048:         s = s->neighb[0];/* Looking for previous shifts with eigenvalues within */
1049:       }
1050:       if (s) {
1051:         d_prev = PetscAbsReal((sPres->value - s->value)/(sPres->inertia - s->inertia));
1052:       } else { /* First shift. Average distance obtained with values in this shift */
1053:         /* first shift might be too far from first wanted eigenvalue (no values found outside the interval)*/
1054:         if (sr->dir*(PetscRealPart(sr->eigr[0])-sPres->value)>0 && PetscAbsReal((PetscRealPart(sr->eigr[sr->indexEig-1]) - PetscRealPart(sr->eigr[0]))/PetscRealPart(sr->eigr[0])) > PetscSqrtReal(eps->tol)) {
1055:           d_prev =  PetscAbsReal((PetscRealPart(sr->eigr[sr->indexEig-1]) - PetscRealPart(sr->eigr[0])))/(sPres->neigs+0.3);
1056:         } else {
1057:           d_prev = PetscAbsReal(PetscRealPart(sr->eigr[sr->indexEig-1]) - sPres->value)/(sPres->neigs+0.3);
1058:         }
1059:       }
1060:       /* Average distance is used for next shift by adding it to value on the right or to shift */
1061:       if (sr->dir*(PetscRealPart(sr->eigr[sPres->index + sPres->neigs -1]) - sPres->value)>0) {
1062:         *newS = PetscRealPart(sr->eigr[sPres->index + sPres->neigs -1])+ (sr->dir*d_prev*eps->nev)/2;
1063:       } else { /* Last accepted value is on the left of shift. Adding to shift */
1064:         *newS = sPres->value + (sr->dir*d_prev*eps->nev)/2;
1065:       }
1066:     }
1067:     /* End of interval can not be surpassed */
1068:     if (sr->dir*(sr->int1 - *newS) < 0) *newS = sr->int1;
1069:   }/* of neighb[side]==null */
1070:   PetscFunctionReturn(PETSC_SUCCESS);
1071: }

1073: /*
1074:   Function for sorting an array of real values
1075: */
1076: static PetscErrorCode sortRealEigenvalues(PetscScalar *r,PetscInt *perm,PetscInt nr,PetscBool prev,PetscInt dir)
1077: {
1078:   PetscReal re;
1079:   PetscInt  i,j,tmp;

1081:   PetscFunctionBegin;
1082:   if (!prev) for (i=0;i<nr;i++) perm[i] = i;
1083:   /* Insertion sort */
1084:   for (i=1;i<nr;i++) {
1085:     re = PetscRealPart(r[perm[i]]);
1086:     j = i-1;
1087:     while (j>=0 && dir*(re - PetscRealPart(r[perm[j]])) <= 0) {
1088:       tmp = perm[j]; perm[j] = perm[j+1]; perm[j+1] = tmp; j--;
1089:     }
1090:   }
1091:   PetscFunctionReturn(PETSC_SUCCESS);
1092: }

1094: /* Stores the pairs obtained since the last shift in the global arrays */
1095: static PetscErrorCode EPSStoreEigenpairs(EPS eps)
1096: {
1097:   EPS_KRYLOVSCHUR *ctx=(EPS_KRYLOVSCHUR*)eps->data;
1098:   PetscReal       lambda,err,norm;
1099:   PetscInt        i,count;
1100:   PetscBool       iscayley;
1101:   EPS_SR          sr = ctx->sr;
1102:   EPS_shift       sPres;
1103:   Vec             v,w;

1105:   PetscFunctionBegin;
1106:   sPres = sr->sPres;
1107:   sPres->index = sr->indexEig;
1108:   count = sr->indexEig;
1109:   /* Back-transform */
1110:   PetscCall(STBackTransform(eps->st,eps->nconv,eps->eigr,eps->eigi));
1111:   PetscCall(PetscObjectTypeCompare((PetscObject)eps->st,STCAYLEY,&iscayley));
1112:   /* Sort eigenvalues */
1113:   PetscCall(sortRealEigenvalues(eps->eigr,eps->perm,eps->nconv,PETSC_FALSE,sr->dir));
1114:   /* Values stored in global array */
1115:   for (i=0;i<eps->nconv;i++) {
1116:     lambda = PetscRealPart(eps->eigr[eps->perm[i]]);
1117:     err = eps->errest[eps->perm[i]];

1119:     if (sr->dir*(lambda - sPres->ext[0]) > 0 && (sr->dir)*(sPres->ext[1] - lambda) > 0) {/* Valid value */
1120:       PetscCheck(count<sr->numEigs,PetscObjectComm((PetscObject)eps),PETSC_ERR_PLIB,"Unexpected error in Spectrum Slicing");
1121:       sr->eigr[count] = lambda;
1122:       sr->errest[count] = err;
1123:       /* Explicit purification */
1124:       PetscCall(BVGetColumn(eps->V,eps->perm[i],&w));
1125:       if (eps->purify) {
1126:         PetscCall(BVGetColumn(sr->V,count,&v));
1127:         PetscCall(STApply(eps->st,w,v));
1128:         PetscCall(BVRestoreColumn(sr->V,count,&v));
1129:       } else PetscCall(BVInsertVec(sr->V,count,w));
1130:       PetscCall(BVRestoreColumn(eps->V,eps->perm[i],&w));
1131:       PetscCall(BVNormColumn(sr->V,count,NORM_2,&norm));
1132:       PetscCall(BVScaleColumn(sr->V,count,1.0/norm));
1133:       count++;
1134:     }
1135:   }
1136:   sPres->neigs = count - sr->indexEig;
1137:   sr->indexEig = count;
1138:   /* Global ordering array updating */
1139:   PetscCall(sortRealEigenvalues(sr->eigr,sr->perm,count,PETSC_TRUE,sr->dir));
1140:   PetscFunctionReturn(PETSC_SUCCESS);
1141: }

1143: static PetscErrorCode EPSLookForDeflation(EPS eps)
1144: {
1145:   PetscReal       val;
1146:   PetscInt        i,count0=0,count1=0;
1147:   EPS_shift       sPres;
1148:   PetscInt        ini,fin,k,idx0,idx1;
1149:   EPS_SR          sr;
1150:   Vec             v;
1151:   EPS_KRYLOVSCHUR *ctx=(EPS_KRYLOVSCHUR*)eps->data;

1153:   PetscFunctionBegin;
1154:   sr = ctx->sr;
1155:   sPres = sr->sPres;

1157:   if (sPres->neighb[0]) ini = (sr->dir)*(sPres->neighb[0]->inertia - sr->inertia0);
1158:   else ini = 0;
1159:   fin = sr->indexEig;
1160:   /* Selection of ends for searching new values */
1161:   if (!sPres->neighb[0]) sPres->ext[0] = sr->int0;/* First shift */
1162:   else sPres->ext[0] = sPres->neighb[0]->value;
1163:   if (!sPres->neighb[1]) {
1164:     if (sr->hasEnd) sPres->ext[1] = sr->int1;
1165:     else sPres->ext[1] = (sr->dir > 0)?PETSC_MAX_REAL:PETSC_MIN_REAL;
1166:   } else sPres->ext[1] = sPres->neighb[1]->value;
1167:   /* Selection of values between right and left ends */
1168:   for (i=ini;i<fin;i++) {
1169:     val=PetscRealPart(sr->eigr[sr->perm[i]]);
1170:     /* Values to the right of left shift */
1171:     if (sr->dir*(val - sPres->ext[1]) < 0) {
1172:       if (sr->dir*(val - sPres->value) < 0) count0++;
1173:       else count1++;
1174:     } else break;
1175:   }
1176:   /* The number of values on each side are found */
1177:   if (sPres->neighb[0]) {
1178:     sPres->nsch[0] = (sr->dir)*(sPres->inertia - sPres->neighb[0]->inertia)-count0;
1179:     PetscCheck(sPres->nsch[0]>=0,PetscObjectComm((PetscObject)eps),PETSC_ERR_PLIB,"Mismatch between number of values found and information from inertia%s",ctx->detect?"":", consider using EPSKrylovSchurSetDetectZeros()");
1180:   } else sPres->nsch[0] = 0;

1182:   if (sPres->neighb[1]) {
1183:     sPres->nsch[1] = (sr->dir)*(sPres->neighb[1]->inertia - sPres->inertia) - count1;
1184:     PetscCheck(sPres->nsch[1]>=0,PetscObjectComm((PetscObject)eps),PETSC_ERR_PLIB,"Mismatch between number of values found and information from inertia%s",ctx->detect?"":", consider using EPSKrylovSchurSetDetectZeros()");
1185:   } else sPres->nsch[1] = (sr->dir)*(sr->inertia1 - sPres->inertia);

1187:   /* Completing vector of indexes for deflation */
1188:   idx0 = ini;
1189:   idx1 = ini+count0+count1;
1190:   k=0;
1191:   for (i=idx0;i<idx1;i++) sr->idxDef[k++]=sr->perm[i];
1192:   PetscCall(BVDuplicateResize(eps->V,k+eps->ncv+1,&sr->Vnext));
1193:   PetscCall(BVSetNumConstraints(sr->Vnext,k));
1194:   for (i=0;i<k;i++) {
1195:     PetscCall(BVGetColumn(sr->Vnext,-i-1,&v));
1196:     PetscCall(BVCopyVec(sr->V,sr->idxDef[i],v));
1197:     PetscCall(BVRestoreColumn(sr->Vnext,-i-1,&v));
1198:   }

1200:   /* For rational Krylov */
1201:   if (sr->nS>0 && (sr->sPrev == sr->sPres->neighb[0] || sr->sPrev == sr->sPres->neighb[1])) PetscCall(EPSPrepareRational(eps));
1202:   eps->nconv = 0;
1203:   /* Get rid of temporary Vnext */
1204:   PetscCall(BVDestroy(&eps->V));
1205:   eps->V = sr->Vnext;
1206:   sr->Vnext = NULL;
1207:   PetscFunctionReturn(PETSC_SUCCESS);
1208: }

1210: PetscErrorCode EPSSolve_KrylovSchur_Slice(EPS eps)
1211: {
1212:   PetscInt         i,lds,ti;
1213:   PetscReal        newS;
1214:   EPS_KRYLOVSCHUR  *ctx=(EPS_KRYLOVSCHUR*)eps->data;
1215:   EPS_SR           sr=ctx->sr;
1216:   Mat              A,B=NULL;
1217:   PetscObjectState Astate,Bstate=0;
1218:   PetscObjectId    Aid,Bid=0;

1220:   PetscFunctionBegin;
1221:   PetscCall(PetscCitationsRegister(citation,&cited));
1222:   if (ctx->global) {
1223:     PetscCall(EPSSolve_KrylovSchur_Slice(ctx->eps));
1224:     ctx->eps->state = EPS_STATE_SOLVED;
1225:     eps->reason = EPS_CONVERGED_TOL;
1226:     if (ctx->npart>1) {
1227:       /* Gather solution from subsolvers */
1228:       PetscCall(EPSSliceGatherSolution(eps));
1229:     } else {
1230:       eps->nconv = sr->numEigs;
1231:       eps->its   = ctx->eps->its;
1232:       PetscCall(PetscFree(ctx->inertias));
1233:       PetscCall(PetscFree(ctx->shifts));
1234:       PetscCall(EPSSliceGetInertias(ctx->eps,&ctx->nshifts,&ctx->shifts,&ctx->inertias));
1235:     }
1236:   } else {
1237:     if (ctx->npart==1) {
1238:       sr->eigr   = ctx->eps->eigr;
1239:       sr->eigi   = ctx->eps->eigi;
1240:       sr->perm   = ctx->eps->perm;
1241:       sr->errest = ctx->eps->errest;
1242:       sr->V      = ctx->eps->V;
1243:     }
1244:     /* Check that the user did not modify subcomm matrices */
1245:     PetscCall(EPSGetOperators(eps,&A,&B));
1246:     PetscCall(PetscObjectStateGet((PetscObject)A,&Astate));
1247:     PetscCall(PetscObjectGetId((PetscObject)A,&Aid));
1248:     if (B) {
1249:       PetscCall(PetscObjectStateGet((PetscObject)B,&Bstate));
1250:       PetscCall(PetscObjectGetId((PetscObject)B,&Bid));
1251:     }
1252:     PetscCheck(Astate==ctx->Astate && (!B || Bstate==ctx->Bstate) && Aid==ctx->Aid && (!B || Bid==ctx->Bid),PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Subcomm matrices have been modified by user");
1253:     /* Only with eigenvalues present in the interval ...*/
1254:     if (sr->numEigs==0) {
1255:       eps->reason = EPS_CONVERGED_TOL;
1256:       PetscFunctionReturn(PETSC_SUCCESS);
1257:     }
1258:     /* Array of pending shifts */
1259:     sr->maxPend = 100; /* Initial size */
1260:     sr->nPend = 0;
1261:     PetscCall(PetscMalloc1(sr->maxPend,&sr->pending));
1262:     PetscCall(EPSCreateShift(eps,sr->int0,NULL,NULL));
1263:     /* extract first shift */
1264:     sr->sPrev = NULL;
1265:     sr->sPres = sr->pending[--sr->nPend];
1266:     sr->sPres->inertia = sr->inertia0;
1267:     eps->target = sr->sPres->value;
1268:     sr->s0 = sr->sPres;
1269:     sr->indexEig = 0;
1270:     /* Memory reservation for auxiliary variables */
1271:     lds = PetscMin(eps->mpd,eps->ncv);
1272:     PetscCall(PetscCalloc1(lds*lds,&sr->S));
1273:     PetscCall(PetscMalloc1(eps->ncv,&sr->back));
1274:     for (i=0;i<sr->numEigs;i++) {
1275:       sr->eigr[i]   = 0.0;
1276:       sr->eigi[i]   = 0.0;
1277:       sr->errest[i] = 0.0;
1278:       sr->perm[i]   = i;
1279:     }
1280:     /* Vectors for deflation */
1281:     PetscCall(PetscMalloc1(sr->numEigs,&sr->idxDef));
1282:     sr->indexEig = 0;
1283:     /* Main loop */
1284:     while (sr->sPres) {
1285:       /* Search for deflation */
1286:       PetscCall(EPSLookForDeflation(eps));
1287:       /* KrylovSchur */
1288:       PetscCall(EPSKrylovSchur_Slice(eps));

1290:       PetscCall(EPSStoreEigenpairs(eps));
1291:       /* Select new shift */
1292:       if (!sr->sPres->comp[1]) {
1293:         PetscCall(EPSGetNewShiftValue(eps,1,&newS));
1294:         PetscCall(EPSCreateShift(eps,newS,sr->sPres,sr->sPres->neighb[1]));
1295:       }
1296:       if (!sr->sPres->comp[0]) {
1297:         /* Completing earlier interval */
1298:         PetscCall(EPSGetNewShiftValue(eps,0,&newS));
1299:         PetscCall(EPSCreateShift(eps,newS,sr->sPres->neighb[0],sr->sPres));
1300:       }
1301:       /* Preparing for a new search of values */
1302:       PetscCall(EPSExtractShift(eps));
1303:     }

1305:     /* Updating eps values prior to exit */
1306:     PetscCall(PetscFree(sr->S));
1307:     PetscCall(PetscFree(sr->idxDef));
1308:     PetscCall(PetscFree(sr->pending));
1309:     PetscCall(PetscFree(sr->back));
1310:     PetscCall(BVDuplicateResize(eps->V,eps->ncv+1,&sr->Vnext));
1311:     PetscCall(BVSetNumConstraints(sr->Vnext,0));
1312:     PetscCall(BVDestroy(&eps->V));
1313:     eps->V      = sr->Vnext;
1314:     eps->nconv  = sr->indexEig;
1315:     eps->reason = EPS_CONVERGED_TOL;
1316:     eps->its    = sr->itsKs;
1317:     eps->nds    = 0;
1318:     if (sr->dir<0) {
1319:       for (i=0;i<eps->nconv/2;i++) {
1320:         ti = sr->perm[i]; sr->perm[i] = sr->perm[eps->nconv-1-i]; sr->perm[eps->nconv-1-i] = ti;
1321:       }
1322:     }
1323:   }
1324:   PetscFunctionReturn(PETSC_SUCCESS);
1325: }