Actual source code: arpack.c

slepc-3.21.1 2024-04-26
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    This file implements a wrapper to the ARPACK package
 12: */

 14: #include <slepc/private/epsimpl.h>
 15: #include "arpack.h"

 17: static PetscErrorCode EPSSetUp_ARPACK(EPS eps)
 18: {
 19:   PetscInt       ncv;
 20:   EPS_ARPACK     *ar = (EPS_ARPACK*)eps->data;

 22:   PetscFunctionBegin;
 23:   EPSCheckDefinite(eps);
 24:   if (eps->ncv!=PETSC_DEFAULT) {
 25:     PetscCheck(eps->ncv>=eps->nev+2,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"The value of ncv must be at least nev+2");
 26:   } else eps->ncv = PetscMin(PetscMax(20,2*eps->nev+1),eps->n); /* set default value of ncv */
 27:   if (eps->mpd!=PETSC_DEFAULT) PetscCall(PetscInfo(eps,"Warning: parameter mpd ignored\n"));
 28:   if (eps->max_it==PETSC_DEFAULT) eps->max_it = PetscMax(300,(PetscInt)(2*eps->n/eps->ncv));
 29:   if (!eps->which) PetscCall(EPSSetWhichEigenpairs_Default(eps));
 30:   PetscCheck(eps->which!=EPS_ALL,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"This solver does not support computing all eigenvalues");
 31:   PetscCheck(eps->which!=EPS_WHICH_USER,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"This solver does not support user-defined ordering of eigenvalues");
 32:   EPSCheckUnsupported(eps,EPS_FEATURE_BALANCE | EPS_FEATURE_ARBITRARY | EPS_FEATURE_REGION | EPS_FEATURE_CONVERGENCE | EPS_FEATURE_STOPPING | EPS_FEATURE_TWOSIDED);
 33:   EPSCheckIgnored(eps,EPS_FEATURE_EXTRACTION);

 35:   ncv = eps->ncv;
 36: #if defined(PETSC_USE_COMPLEX)
 37:   PetscCall(PetscFree(ar->rwork));
 38:   PetscCall(PetscMalloc1(ncv,&ar->rwork));
 39:   ar->lworkl = 3*ncv*ncv+5*ncv;
 40:   PetscCall(PetscFree(ar->workev));
 41:   PetscCall(PetscMalloc1(3*ncv,&ar->workev));
 42: #else
 43:   if (eps->ishermitian) {
 44:     ar->lworkl = ncv*(ncv+8);
 45:   } else {
 46:     ar->lworkl = 3*ncv*ncv+6*ncv;
 47:     PetscCall(PetscFree(ar->workev));
 48:     PetscCall(PetscMalloc1(3*ncv,&ar->workev));
 49:   }
 50: #endif
 51:   PetscCall(PetscFree(ar->workl));
 52:   PetscCall(PetscMalloc1(ar->lworkl,&ar->workl));
 53:   PetscCall(PetscFree(ar->select));
 54:   PetscCall(PetscMalloc1(ncv,&ar->select));
 55:   PetscCall(PetscFree(ar->workd));
 56:   PetscCall(PetscMalloc1(3*eps->nloc,&ar->workd));

 58:   PetscCall(EPSAllocateSolution(eps,0));
 59:   PetscCall(EPS_SetInnerProduct(eps));
 60:   PetscCall(EPSSetWorkVecs(eps,2));
 61:   PetscFunctionReturn(PETSC_SUCCESS);
 62: }

 64: static PetscErrorCode EPSSolve_ARPACK(EPS eps)
 65: {
 66:   EPS_ARPACK     *ar = (EPS_ARPACK*)eps->data;
 67:   char           bmat[1],howmny[] = "A";
 68:   const char     *which;
 69:   PetscInt       n,ld,iparam[11],ipntr[14],ido,info,nev,ncv,rvec;
 70: #if !defined(PETSC_HAVE_MPIUNI) && !defined(PETSC_HAVE_MSMPI)
 71:   MPI_Fint       fcomm;
 72: #endif
 73:   PetscScalar    sigmar,*pV,*resid;
 74:   Vec            x,y,w = eps->work[0];
 75:   Mat            A;
 76:   PetscBool      isSinv,isShift;
 77: #if !defined(PETSC_USE_COMPLEX)
 78:   PetscScalar    sigmai = 0.0;
 79: #endif

 81:   PetscFunctionBegin;
 82:   nev = eps->nev;
 83:   ncv = eps->ncv;
 84: #if !defined(PETSC_HAVE_MPIUNI) && !defined(PETSC_HAVE_MSMPI)
 85:   fcomm = MPI_Comm_c2f(PetscObjectComm((PetscObject)eps));
 86: #endif
 87:   n = eps->nloc;
 88:   PetscCall(EPSGetStartVector(eps,0,NULL));
 89:   PetscCall(BVSetActiveColumns(eps->V,0,0));  /* just for deflation space */
 90:   PetscCall(BVCopyVec(eps->V,0,eps->work[1]));
 91:   PetscCall(BVGetLeadingDimension(eps->V,&ld));
 92:   PetscCall(BVGetArray(eps->V,&pV));
 93:   PetscCall(VecGetArray(eps->work[1],&resid));

 95:   ido  = 0;            /* first call to reverse communication interface */
 96:   info = 1;            /* indicates an initial vector is provided */
 97:   iparam[0] = 1;       /* use exact shifts */
 98:   iparam[2] = eps->max_it;  /* max Arnoldi iterations */
 99:   iparam[3] = 1;       /* blocksize */
100:   iparam[4] = 0;       /* number of converged Ritz values */

102:   /*
103:      Computational modes ([]=not supported):
104:             symmetric    non-symmetric    complex
105:         1     1  'I'        1  'I'         1  'I'
106:         2     3  'I'        3  'I'         3  'I'
107:         3     2  'G'        2  'G'         2  'G'
108:         4     3  'G'        3  'G'         3  'G'
109:         5   [ 4  'G' ]    [ 3  'G' ]
110:         6   [ 5  'G' ]    [ 4  'G' ]
111:    */
112:   PetscCall(PetscObjectTypeCompare((PetscObject)eps->st,STSINVERT,&isSinv));
113:   PetscCall(PetscObjectTypeCompare((PetscObject)eps->st,STSHIFT,&isShift));
114:   PetscCall(STGetShift(eps->st,&sigmar));
115:   PetscCall(STGetMatrix(eps->st,0,&A));
116:   PetscCall(MatCreateVecsEmpty(A,&x,&y));

118:   if (isSinv) {
119:     /* shift-and-invert mode */
120:     iparam[6] = 3;
121:     if (eps->ispositive) bmat[0] = 'G';
122:     else bmat[0] = 'I';
123:   } else if (isShift && eps->ispositive) {
124:     /* generalized shift mode with B positive definite */
125:     iparam[6] = 2;
126:     bmat[0] = 'G';
127:   } else {
128:     /* regular mode */
129:     PetscCheck(!eps->ishermitian || !eps->isgeneralized,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Spectral transformation not supported by ARPACK hermitian solver");
130:     iparam[6] = 1;
131:     bmat[0] = 'I';
132:   }

134: #if !defined(PETSC_USE_COMPLEX)
135:   if (eps->ishermitian) {
136:     switch (eps->which) {
137:       case EPS_TARGET_MAGNITUDE:
138:       case EPS_LARGEST_MAGNITUDE:  which = "LM"; break;
139:       case EPS_SMALLEST_MAGNITUDE: which = "SM"; break;
140:       case EPS_TARGET_REAL:
141:       case EPS_LARGEST_REAL:       which = "LA"; break;
142:       case EPS_SMALLEST_REAL:      which = "SA"; break;
143:       default: SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONG,"Wrong value of eps->which");
144:     }
145:   } else {
146: #endif
147:     switch (eps->which) {
148:       case EPS_TARGET_MAGNITUDE:
149:       case EPS_LARGEST_MAGNITUDE:  which = "LM"; break;
150:       case EPS_SMALLEST_MAGNITUDE: which = "SM"; break;
151:       case EPS_TARGET_REAL:
152:       case EPS_LARGEST_REAL:       which = "LR"; break;
153:       case EPS_SMALLEST_REAL:      which = "SR"; break;
154:       case EPS_TARGET_IMAGINARY:
155:       case EPS_LARGEST_IMAGINARY:  which = "LI"; break;
156:       case EPS_SMALLEST_IMAGINARY: which = "SI"; break;
157:       default: SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_WRONG,"Wrong value of eps->which");
158:     }
159: #if !defined(PETSC_USE_COMPLEX)
160:   }
161: #endif

163:   do {

165: #if !defined(PETSC_USE_COMPLEX)
166:     if (eps->ishermitian) {
167:       PetscStackCallExternalVoid("ARPACKsaupd",ARPACKsaupd_(&fcomm,&ido,bmat,&n,which,&nev,&eps->tol,resid,&ncv,pV,&ld,iparam,ipntr,ar->workd,ar->workl,&ar->lworkl,&info));
168:     } else {
169:       PetscStackCallExternalVoid("ARPACKnaupd",ARPACKnaupd_(&fcomm,&ido,bmat,&n,which,&nev,&eps->tol,resid,&ncv,pV,&ld,iparam,ipntr,ar->workd,ar->workl,&ar->lworkl,&info));
170:     }
171: #else
172:     PetscStackCallExternalVoid("ARPACKnaupd",ARPACKnaupd_(&fcomm,&ido,bmat,&n,which,&nev,&eps->tol,resid,&ncv,pV,&ld,iparam,ipntr,ar->workd,ar->workl,&ar->lworkl,ar->rwork,&info));
173: #endif

175:     if (ido == -1 || ido == 1 || ido == 2) {
176:       if (ido == 1 && iparam[6] == 3 && bmat[0] == 'G') PetscCall(VecPlaceArray(x,&ar->workd[ipntr[2]-1])); /* special case for shift-and-invert with B semi-positive definite*/
177:       else PetscCall(VecPlaceArray(x,&ar->workd[ipntr[0]-1]));
178:       PetscCall(VecPlaceArray(y,&ar->workd[ipntr[1]-1]));

180:       if (ido == -1) {
181:         /* Y = OP * X for the initialization phase to
182:            force the starting vector into the range of OP */
183:         PetscCall(STApply(eps->st,x,y));
184:       } else if (ido == 2) {
185:         /* Y = B * X */
186:         PetscCall(BVApplyMatrix(eps->V,x,y));
187:       } else { /* ido == 1 */
188:         if (iparam[6] == 3 && bmat[0] == 'G') {
189:           /* Y = OP * X for shift-and-invert with B semi-positive definite */
190:           PetscCall(STMatSolve(eps->st,x,y));
191:         } else if (iparam[6] == 2) {
192:           /* X=A*X Y=B^-1*X for shift with B positive definite */
193:           PetscCall(MatMult(A,x,y));
194:           if (sigmar != 0.0) {
195:             PetscCall(BVApplyMatrix(eps->V,x,w));
196:             PetscCall(VecAXPY(y,sigmar,w));
197:           }
198:           PetscCall(VecCopy(y,x));
199:           PetscCall(STMatSolve(eps->st,x,y));
200:         } else {
201:           /* Y = OP * X */
202:           PetscCall(STApply(eps->st,x,y));
203:         }
204:         PetscCall(BVOrthogonalizeVec(eps->V,y,NULL,NULL,NULL));
205:       }

207:       PetscCall(VecResetArray(x));
208:       PetscCall(VecResetArray(y));
209:     } else PetscCheck(ido==99,PetscObjectComm((PetscObject)eps),PETSC_ERR_LIB,"Internal error in ARPACK reverse communication interface (ido=%" PetscInt_FMT ")",ido);

211:   } while (ido != 99);

213:   eps->nconv = iparam[4];
214:   eps->its = iparam[2];

216:   PetscCheck(info!=3,PetscObjectComm((PetscObject)eps),PETSC_ERR_LIB,"No shift could be applied in xxAUPD. Try increasing the size of NCV relative to NEV");
217:   PetscCheck(info==0 || info==1,PetscObjectComm((PetscObject)eps),PETSC_ERR_LIB,"Error reported by ARPACK subroutine xxAUPD (%" PetscInt_FMT ")",info);

219:   rvec = PETSC_TRUE;

221:   if (eps->nconv > 0) {
222: #if !defined(PETSC_USE_COMPLEX)
223:     if (eps->ishermitian) {
224:       PetscStackCallExternalVoid("ARPACKseupd",ARPACKseupd_(&fcomm,&rvec,howmny,ar->select,eps->eigr,pV,&ld,&sigmar,bmat,&n,which,&nev,&eps->tol,resid,&ncv,pV,&ld,iparam,ipntr,ar->workd,ar->workl,&ar->lworkl,&info));
225:     } else {
226:       PetscStackCallExternalVoid("ARPACKneupd",ARPACKneupd_(&fcomm,&rvec,howmny,ar->select,eps->eigr,eps->eigi,pV,&ld,&sigmar,&sigmai,ar->workev,bmat,&n,which,&nev,&eps->tol,resid,&ncv,pV,&ld,iparam,ipntr,ar->workd,ar->workl,&ar->lworkl,&info));
227:     }
228: #else
229:     PetscStackCallExternalVoid("ARPACKneupd",ARPACKneupd_(&fcomm,&rvec,howmny,ar->select,eps->eigr,pV,&ld,&sigmar,ar->workev,bmat,&n,which,&nev,&eps->tol,resid,&ncv,pV,&ld,iparam,ipntr,ar->workd,ar->workl,&ar->lworkl,ar->rwork,&info));
230: #endif
231:     PetscCheck(info==0,PetscObjectComm((PetscObject)eps),PETSC_ERR_LIB,"Error reported by ARPACK subroutine xxEUPD (%" PetscInt_FMT ")",info);
232:   }

234:   PetscCall(BVRestoreArray(eps->V,&pV));
235:   PetscCall(VecRestoreArray(eps->work[1],&resid));
236:   if (eps->nconv >= eps->nev) eps->reason = EPS_CONVERGED_TOL;
237:   else eps->reason = EPS_DIVERGED_ITS;

239:   PetscCall(VecDestroy(&x));
240:   PetscCall(VecDestroy(&y));
241:   PetscFunctionReturn(PETSC_SUCCESS);
242: }

244: static PetscErrorCode EPSBackTransform_ARPACK(EPS eps)
245: {
246:   PetscBool      isSinv;

248:   PetscFunctionBegin;
249:   PetscCall(PetscObjectTypeCompare((PetscObject)eps->st,STSINVERT,&isSinv));
250:   if (!isSinv) PetscCall(EPSBackTransform_Default(eps));
251:   PetscFunctionReturn(PETSC_SUCCESS);
252: }

254: static PetscErrorCode EPSReset_ARPACK(EPS eps)
255: {
256:   EPS_ARPACK     *ar = (EPS_ARPACK*)eps->data;

258:   PetscFunctionBegin;
259:   PetscCall(PetscFree(ar->workev));
260:   PetscCall(PetscFree(ar->workl));
261:   PetscCall(PetscFree(ar->select));
262:   PetscCall(PetscFree(ar->workd));
263: #if defined(PETSC_USE_COMPLEX)
264:   PetscCall(PetscFree(ar->rwork));
265: #endif
266:   PetscFunctionReturn(PETSC_SUCCESS);
267: }

269: static PetscErrorCode EPSDestroy_ARPACK(EPS eps)
270: {
271:   PetscFunctionBegin;
272:   PetscCall(PetscFree(eps->data));
273:   PetscFunctionReturn(PETSC_SUCCESS);
274: }

276: SLEPC_EXTERN PetscErrorCode EPSCreate_ARPACK(EPS eps)
277: {
278:   EPS_ARPACK     *ctx;

280:   PetscFunctionBegin;
281:   PetscCall(PetscNew(&ctx));
282:   eps->data = (void*)ctx;

284:   eps->ops->solve          = EPSSolve_ARPACK;
285:   eps->ops->setup          = EPSSetUp_ARPACK;
286:   eps->ops->setupsort      = EPSSetUpSort_Basic;
287:   eps->ops->destroy        = EPSDestroy_ARPACK;
288:   eps->ops->reset          = EPSReset_ARPACK;
289:   eps->ops->backtransform  = EPSBackTransform_ARPACK;
290:   PetscFunctionReturn(PETSC_SUCCESS);
291: }