Actual source code: davidson.c

slepc-3.21.1 2024-04-26
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    Skeleton of Davidson solver. Actual solvers are GD and JD.

 13:    References:

 15:        [1] E. Romero and J.E. Roman, "A parallel implementation of Davidson
 16:            methods for large-scale eigenvalue problems in SLEPc", ACM Trans.
 17:            Math. Software 40(2):13, 2014.
 18: */

 20: #include "davidson.h"

 22: static PetscBool  cited = PETSC_FALSE;
 23: static const char citation[] =
 24:   "@Article{slepc-davidson,\n"
 25:   "   author = \"E. Romero and J. E. Roman\",\n"
 26:   "   title = \"A parallel implementation of {Davidson} methods for large-scale eigenvalue problems in {SLEPc}\",\n"
 27:   "   journal = \"{ACM} Trans. Math. Software\",\n"
 28:   "   volume = \"40\",\n"
 29:   "   number = \"2\",\n"
 30:   "   pages = \"13:1--13:29\",\n"
 31:   "   year = \"2014,\"\n"
 32:   "   doi = \"https://doi.org/10.1145/2543696\"\n"
 33:   "}\n";

 35: PetscErrorCode EPSSetUp_XD(EPS eps)
 36: {
 37:   EPS_DAVIDSON   *data = (EPS_DAVIDSON*)eps->data;
 38:   dvdDashboard   *dvd = &data->ddb;
 39:   dvdBlackboard  b;
 40:   PetscInt       min_size_V,bs,initv,nmat;
 41:   Mat            A,B;
 42:   KSP            ksp;
 43:   PetscBool      ipB,ispositive;
 44:   HarmType_t     harm;
 45:   InitType_t     init;
 46:   PetscScalar    target;

 48:   PetscFunctionBegin;
 49:   /* Setup EPS options and get the problem specification */
 50:   bs = data->blocksize;
 51:   if (bs <= 0) bs = 1;
 52:   if (eps->ncv!=PETSC_DEFAULT && eps->ncv!=PETSC_DECIDE) {
 53:     PetscCheck(eps->ncv>=eps->nev,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"The value of ncv must be at least nev");
 54:   } else if (eps->mpd!=PETSC_DEFAULT && eps->mpd!=PETSC_DECIDE) eps->ncv = eps->mpd + eps->nev + bs;
 55:   else if (eps->n < 10) eps->ncv = eps->n+eps->nev+bs;
 56:   else if (eps->nev < 500) eps->ncv = PetscMax(eps->nev,PetscMin(eps->n-bs,PetscMax(2*eps->nev,eps->nev+15))+bs);
 57:   else eps->ncv = PetscMax(eps->nev,PetscMin(eps->n-bs,eps->nev+500)+bs);
 58:   if (eps->mpd==PETSC_DEFAULT || eps->mpd==PETSC_DECIDE) eps->mpd = PetscMin(eps->n,eps->ncv);
 59:   PetscCheck(eps->mpd<=eps->ncv,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"The mpd parameter has to be less than or equal to ncv");
 60:   PetscCheck(eps->mpd>=2,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"The mpd parameter has to be greater than 2");
 61:   if (eps->max_it == PETSC_DEFAULT || eps->max_it == PETSC_DECIDE) eps->max_it = PetscMax(100*eps->ncv,2*eps->n);
 62:   if (!eps->which) eps->which = EPS_LARGEST_MAGNITUDE;
 63:   PetscCheck(eps->nev+bs<=eps->ncv,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"The value of ncv has to be greater than nev plus blocksize");
 64:   PetscCheck(!eps->trueres,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"-eps_true_residual is disabled in this solver.");
 65:   EPSCheckUnsupported(eps,EPS_FEATURE_REGION | EPS_FEATURE_TWOSIDED);

 67:   if (!data->minv) data->minv = (eps->n && eps->n<10)? 1: PetscMin(PetscMax(bs,6),eps->mpd/2);
 68:   min_size_V = data->minv;
 69:   PetscCheck(min_size_V+bs<=eps->mpd,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"The value of minv must be less than mpd minus blocksize");
 70:   if (data->plusk == PETSC_DEFAULT) {
 71:     if (eps->problem_type == EPS_GHIEP || eps->nev+bs>eps->ncv) data->plusk = 0;
 72:     else data->plusk = 1;
 73:   }
 74:   if (!data->initialsize) data->initialsize = (eps->n && eps->n<10)? 1: 6;
 75:   initv = data->initialsize;
 76:   PetscCheck(eps->mpd>=initv,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"The initv parameter has to be less than or equal to mpd");

 78:   /* Change the default sigma to inf if necessary */
 79:   if (eps->which == EPS_LARGEST_MAGNITUDE || eps->which == EPS_LARGEST_REAL || eps->which == EPS_LARGEST_IMAGINARY) PetscCall(STSetDefaultShift(eps->st,PETSC_MAX_REAL));

 81:   /* Set up preconditioner */
 82:   PetscCall(STSetUp(eps->st));

 84:   /* Setup problem specification in dvd */
 85:   PetscCall(STGetNumMatrices(eps->st,&nmat));
 86:   PetscCall(STGetMatrix(eps->st,0,&A));
 87:   if (nmat>1) PetscCall(STGetMatrix(eps->st,1,&B));
 88:   PetscCall(EPSReset_XD(eps));
 89:   PetscCall(PetscMemzero(dvd,sizeof(dvdDashboard)));
 90:   dvd->A = A; dvd->B = eps->isgeneralized? B: NULL;
 91:   ispositive = eps->ispositive;
 92:   dvd->sA = DVD_MAT_IMPLICIT | (eps->ishermitian? DVD_MAT_HERMITIAN: 0) | ((ispositive && !eps->isgeneralized) ? DVD_MAT_POS_DEF: 0);
 93:   /* Assume -eps_hermitian means hermitian-definite in generalized problems */
 94:   if (!ispositive && !eps->isgeneralized && eps->ishermitian) ispositive = PETSC_TRUE;
 95:   if (!eps->isgeneralized) dvd->sB = DVD_MAT_IMPLICIT | DVD_MAT_HERMITIAN | DVD_MAT_IDENTITY | DVD_MAT_UNITARY | DVD_MAT_POS_DEF;
 96:   else dvd->sB = DVD_MAT_IMPLICIT | (eps->ishermitian? DVD_MAT_HERMITIAN: 0) | (ispositive? DVD_MAT_POS_DEF: 0);
 97:   ipB = (dvd->B && data->ipB && DVD_IS(dvd->sB,DVD_MAT_HERMITIAN))?PETSC_TRUE:PETSC_FALSE;
 98:   dvd->sEP = ((!eps->isgeneralized || (eps->isgeneralized && ipB))? DVD_EP_STD: 0) | (ispositive? DVD_EP_HERMITIAN: 0) | ((eps->problem_type == EPS_GHIEP && ipB) ? DVD_EP_INDEFINITE : 0);
 99:   if (data->ipB && !ipB) data->ipB = PETSC_FALSE;
100:   dvd->correctXnorm = (dvd->B && (DVD_IS(dvd->sB,DVD_MAT_HERMITIAN)||DVD_IS(dvd->sEP,DVD_EP_INDEFINITE)))?PETSC_TRUE:PETSC_FALSE;
101:   dvd->nev        = eps->nev;
102:   dvd->which      = eps->which;
103:   dvd->withTarget = PETSC_TRUE;
104:   switch (eps->which) {
105:     case EPS_TARGET_MAGNITUDE:
106:     case EPS_TARGET_IMAGINARY:
107:       dvd->target[0] = target = eps->target;
108:       dvd->target[1] = 1.0;
109:       break;
110:     case EPS_TARGET_REAL:
111:       dvd->target[0] = PetscRealPart(target = eps->target);
112:       dvd->target[1] = 1.0;
113:       break;
114:     case EPS_LARGEST_REAL:
115:     case EPS_LARGEST_MAGNITUDE:
116:     case EPS_LARGEST_IMAGINARY: /* TODO: think about this case */
117:       dvd->target[0] = 1.0;
118:       dvd->target[1] = target = 0.0;
119:       break;
120:     case EPS_SMALLEST_MAGNITUDE:
121:     case EPS_SMALLEST_REAL:
122:     case EPS_SMALLEST_IMAGINARY: /* TODO: think about this case */
123:       dvd->target[0] = target = 0.0;
124:       dvd->target[1] = 1.0;
125:       break;
126:     case EPS_WHICH_USER:
127:       PetscCall(STGetShift(eps->st,&target));
128:       dvd->target[0] = target;
129:       dvd->target[1] = 1.0;
130:       break;
131:     case EPS_ALL:
132:       SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"This solver does not support computing all eigenvalues");
133:     default:
134:       SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Unsupported value of option 'which'");
135:   }
136:   dvd->tol = SlepcDefaultTol(eps->tol);
137:   dvd->eps = eps;

139:   /* Setup the extraction technique */
140:   if (!eps->extraction) {
141:     if (ipB || ispositive) eps->extraction = EPS_RITZ;
142:     else {
143:       switch (eps->which) {
144:         case EPS_TARGET_REAL:
145:         case EPS_TARGET_MAGNITUDE:
146:         case EPS_TARGET_IMAGINARY:
147:         case EPS_SMALLEST_MAGNITUDE:
148:         case EPS_SMALLEST_REAL:
149:         case EPS_SMALLEST_IMAGINARY:
150:           eps->extraction = EPS_HARMONIC;
151:           break;
152:         case EPS_LARGEST_REAL:
153:         case EPS_LARGEST_MAGNITUDE:
154:         case EPS_LARGEST_IMAGINARY:
155:           eps->extraction = EPS_HARMONIC_LARGEST;
156:           break;
157:         default:
158:           eps->extraction = EPS_RITZ;
159:       }
160:     }
161:   }
162:   switch (eps->extraction) {
163:     case EPS_RITZ:              harm = DVD_HARM_NONE; break;
164:     case EPS_HARMONIC:          harm = DVD_HARM_RR; break;
165:     case EPS_HARMONIC_RELATIVE: harm = DVD_HARM_RRR; break;
166:     case EPS_HARMONIC_RIGHT:    harm = DVD_HARM_REIGS; break;
167:     case EPS_HARMONIC_LARGEST:  harm = DVD_HARM_LEIGS; break;
168:     default: SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"Unsupported extraction type");
169:   }

171:   /* Setup the type of starting subspace */
172:   init = data->krylovstart? DVD_INITV_KRYLOV: DVD_INITV_CLASSIC;

174:   /* Preconfigure dvd */
175:   PetscCall(STGetKSP(eps->st,&ksp));
176:   PetscCall(dvd_schm_basic_preconf(dvd,&b,eps->mpd,min_size_V,bs,initv,PetscAbs(eps->nini),data->plusk,harm,ksp,init,eps->trackall,data->ipB,data->doubleexp));

178:   /* Allocate memory */
179:   PetscCall(EPSAllocateSolution(eps,0));

181:   /* Setup orthogonalization */
182:   PetscCall(EPS_SetInnerProduct(eps));
183:   if (!(ipB && dvd->B)) PetscCall(BVSetMatrix(eps->V,NULL,PETSC_FALSE));

185:   /* Configure dvd for a basic GD */
186:   PetscCall(dvd_schm_basic_conf(dvd,&b,eps->mpd,min_size_V,bs,initv,PetscAbs(eps->nini),data->plusk,harm,dvd->withTarget,target,ksp,data->fix,init,eps->trackall,data->ipB,data->dynamic,data->doubleexp));
187:   PetscFunctionReturn(PETSC_SUCCESS);
188: }

190: PetscErrorCode EPSSolve_XD(EPS eps)
191: {
192:   EPS_DAVIDSON   *data = (EPS_DAVIDSON*)eps->data;
193:   dvdDashboard   *d = &data->ddb;
194:   PetscInt       l,k;

196:   PetscFunctionBegin;
197:   PetscCall(PetscCitationsRegister(citation,&cited));
198:   /* Call the starting routines */
199:   PetscCall(EPSDavidsonFLCall(d->startList,d));

201:   while (eps->reason == EPS_CONVERGED_ITERATING) {

203:     /* Initialize V, if it is needed */
204:     PetscCall(BVGetActiveColumns(d->eps->V,&l,&k));
205:     if (PetscUnlikely(l == k)) PetscCall(d->initV(d));

207:     /* Find the best approximated eigenpairs in V, X */
208:     PetscCall(d->calcPairs(d));

210:     /* Test for convergence */
211:     PetscCall((*eps->stopping)(eps,eps->its,eps->max_it,eps->nconv,eps->nev,&eps->reason,eps->stoppingctx));
212:     if (eps->reason != EPS_CONVERGED_ITERATING) break;

214:     /* Expand the subspace */
215:     PetscCall(d->updateV(d));

217:     /* Monitor progress */
218:     eps->nconv = d->nconv;
219:     eps->its++;
220:     PetscCall(BVGetActiveColumns(d->eps->V,NULL,&k));
221:     PetscCall(EPSMonitor(eps,eps->its,eps->nconv+d->npreconv,eps->eigr,eps->eigi,eps->errest,PetscMin(k,eps->nev)));
222:   }

224:   /* Call the ending routines */
225:   PetscCall(EPSDavidsonFLCall(d->endList,d));
226:   PetscFunctionReturn(PETSC_SUCCESS);
227: }

229: PetscErrorCode EPSReset_XD(EPS eps)
230: {
231:   EPS_DAVIDSON   *data = (EPS_DAVIDSON*)eps->data;
232:   dvdDashboard   *dvd = &data->ddb;

234:   PetscFunctionBegin;
235:   /* Call step destructors and destroys the list */
236:   PetscCall(EPSDavidsonFLCall(dvd->destroyList,dvd));
237:   PetscCall(EPSDavidsonFLDestroy(&dvd->destroyList));
238:   PetscCall(EPSDavidsonFLDestroy(&dvd->startList));
239:   PetscCall(EPSDavidsonFLDestroy(&dvd->endList));
240:   PetscFunctionReturn(PETSC_SUCCESS);
241: }

243: PetscErrorCode EPSXDSetKrylovStart_XD(EPS eps,PetscBool krylovstart)
244: {
245:   EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;

247:   PetscFunctionBegin;
248:   data->krylovstart = krylovstart;
249:   PetscFunctionReturn(PETSC_SUCCESS);
250: }

252: PetscErrorCode EPSXDGetKrylovStart_XD(EPS eps,PetscBool *krylovstart)
253: {
254:   EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;

256:   PetscFunctionBegin;
257:   *krylovstart = data->krylovstart;
258:   PetscFunctionReturn(PETSC_SUCCESS);
259: }

261: PetscErrorCode EPSXDSetBlockSize_XD(EPS eps,PetscInt blocksize)
262: {
263:   EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;

265:   PetscFunctionBegin;
266:   if (blocksize == PETSC_DEFAULT || blocksize == PETSC_DECIDE) blocksize = 1;
267:   PetscCheck(blocksize>0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid blocksize value, must be >0");
268:   if (data->blocksize != blocksize) {
269:     data->blocksize = blocksize;
270:     eps->state      = EPS_STATE_INITIAL;
271:   }
272:   PetscFunctionReturn(PETSC_SUCCESS);
273: }

275: PetscErrorCode EPSXDGetBlockSize_XD(EPS eps,PetscInt *blocksize)
276: {
277:   EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;

279:   PetscFunctionBegin;
280:   *blocksize = data->blocksize;
281:   PetscFunctionReturn(PETSC_SUCCESS);
282: }

284: PetscErrorCode EPSXDSetRestart_XD(EPS eps,PetscInt minv,PetscInt plusk)
285: {
286:   EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;

288:   PetscFunctionBegin;
289:   if (minv == PETSC_DEFAULT || minv == PETSC_DECIDE) minv = 0;
290:   else PetscCheck(minv>0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid minv value, must be >0");
291:   if (plusk == PETSC_DEFAULT || plusk == PETSC_DECIDE) plusk = PETSC_DEFAULT;
292:   else PetscCheck(plusk>=0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid plusk value, must be >0");
293:   if (data->minv != minv || data->plusk != plusk) {
294:     data->minv  = minv;
295:     data->plusk = plusk;
296:     eps->state  = EPS_STATE_INITIAL;
297:   }
298:   PetscFunctionReturn(PETSC_SUCCESS);
299: }

301: PetscErrorCode EPSXDGetRestart_XD(EPS eps,PetscInt *minv,PetscInt *plusk)
302: {
303:   EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;

305:   PetscFunctionBegin;
306:   if (minv) *minv = data->minv;
307:   if (plusk) *plusk = data->plusk;
308:   PetscFunctionReturn(PETSC_SUCCESS);
309: }

311: PetscErrorCode EPSXDGetInitialSize_XD(EPS eps,PetscInt *initialsize)
312: {
313:   EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;

315:   PetscFunctionBegin;
316:   *initialsize = data->initialsize;
317:   PetscFunctionReturn(PETSC_SUCCESS);
318: }

320: PetscErrorCode EPSXDSetInitialSize_XD(EPS eps,PetscInt initialsize)
321: {
322:   EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;

324:   PetscFunctionBegin;
325:   if (initialsize == PETSC_DEFAULT || initialsize == PETSC_DECIDE) initialsize = 0;
326:   else PetscCheck(initialsize>0,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"Invalid initial size value, must be >0");
327:   if (data->initialsize != initialsize) {
328:     data->initialsize = initialsize;
329:     eps->state        = EPS_STATE_INITIAL;
330:   }
331:   PetscFunctionReturn(PETSC_SUCCESS);
332: }

334: PetscErrorCode EPSXDSetBOrth_XD(EPS eps,PetscBool borth)
335: {
336:   EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;

338:   PetscFunctionBegin;
339:   data->ipB = borth;
340:   PetscFunctionReturn(PETSC_SUCCESS);
341: }

343: PetscErrorCode EPSXDGetBOrth_XD(EPS eps,PetscBool *borth)
344: {
345:   EPS_DAVIDSON *data = (EPS_DAVIDSON*)eps->data;

347:   PetscFunctionBegin;
348:   *borth = data->ipB;
349:   PetscFunctionReturn(PETSC_SUCCESS);
350: }

352: /*
353:   EPSComputeVectors_XD - Compute eigenvectors from the vectors
354:   provided by the eigensolver. This version is intended for solvers
355:   that provide Schur vectors from the QZ decomposition. Given the partial
356:   Schur decomposition OP*V=V*T, the following steps are performed:
357:       1) compute eigenvectors of (S,T): S*Z=T*Z*D
358:       2) compute eigenvectors of OP: X=V*Z
359:  */
360: PetscErrorCode EPSComputeVectors_XD(EPS eps)
361: {
362:   Mat            X;
363:   PetscBool      symm;

365:   PetscFunctionBegin;
366:   PetscCall(PetscObjectTypeCompare((PetscObject)eps->ds,DSHEP,&symm));
367:   if (symm) PetscFunctionReturn(PETSC_SUCCESS);
368:   PetscCall(DSVectors(eps->ds,DS_MAT_X,NULL,NULL));

370:   /* V <- V * X */
371:   PetscCall(DSGetMat(eps->ds,DS_MAT_X,&X));
372:   PetscCall(BVSetActiveColumns(eps->V,0,eps->nconv));
373:   PetscCall(BVMultInPlace(eps->V,X,0,eps->nconv));
374:   PetscCall(DSRestoreMat(eps->ds,DS_MAT_X,&X));
375:   PetscFunctionReturn(PETSC_SUCCESS);
376: }