Actual source code: rqcg.c

slepc-3.21.1 2024-04-26
Report Typos and Errors
  1: /*
  2:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  3:    SLEPc - Scalable Library for Eigenvalue Problem Computations
  4:    Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain

  6:    This file is part of SLEPc.
  7:    SLEPc is distributed under a 2-clause BSD license (see LICENSE).
  8:    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  9: */
 10: /*
 11:    SLEPc eigensolver: "rqcg"

 13:    Method: Rayleigh Quotient Conjugate Gradient

 15:    Algorithm:

 17:        Conjugate Gradient minimization of the Rayleigh quotient with
 18:        periodic Rayleigh-Ritz acceleration.

 20:    References:

 22:        [1] L. Bergamaschi et al., "Parallel preconditioned conjugate gradient
 23:            optimization of the Rayleigh quotient for the solution of sparse
 24:            eigenproblems", Appl. Math. Comput. 175(2):1694-1715, 2006.
 25: */

 27: #include <slepc/private/epsimpl.h>

 29: static PetscErrorCode EPSSolve_RQCG(EPS);

 31: typedef struct {
 32:   PetscInt nrest;         /* user-provided reset parameter */
 33:   PetscInt allocsize;     /* number of columns of work BV's allocated at setup */
 34:   BV       AV,W,P,G;
 35: } EPS_RQCG;

 37: static PetscErrorCode EPSSetUp_RQCG(EPS eps)
 38: {
 39:   PetscInt       nmat;
 40:   EPS_RQCG       *ctx = (EPS_RQCG*)eps->data;

 42:   PetscFunctionBegin;
 43:   EPSCheckHermitianDefinite(eps);
 44:   PetscCall(EPSSetDimensions_Default(eps,eps->nev,&eps->ncv,&eps->mpd));
 45:   if (eps->max_it==PETSC_DEFAULT) eps->max_it = PetscMax(100,2*eps->n/eps->ncv);
 46:   if (!eps->which) eps->which = EPS_SMALLEST_REAL;
 47:   PetscCheck(eps->which==EPS_SMALLEST_REAL,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"This solver supports only smallest real eigenvalues");
 48:   EPSCheckUnsupported(eps,EPS_FEATURE_ARBITRARY | EPS_FEATURE_REGION | EPS_FEATURE_EXTRACTION);
 49:   EPSCheckIgnored(eps,EPS_FEATURE_BALANCE);

 51:   if (!ctx->nrest) ctx->nrest = 20;

 53:   PetscCall(EPSAllocateSolution(eps,0));
 54:   PetscCall(EPS_SetInnerProduct(eps));

 56:   PetscCall(STGetNumMatrices(eps->st,&nmat));
 57:   if (!ctx->allocsize) {
 58:     ctx->allocsize = eps->mpd;
 59:     PetscCall(BVDuplicateResize(eps->V,eps->mpd,&ctx->AV));
 60:     if (nmat>1) PetscCall(BVDuplicate(ctx->AV,&ctx->W));
 61:     PetscCall(BVDuplicate(ctx->AV,&ctx->P));
 62:     PetscCall(BVDuplicate(ctx->AV,&ctx->G));
 63:   } else if (ctx->allocsize!=eps->mpd) {
 64:     ctx->allocsize = eps->mpd;
 65:     PetscCall(BVResize(ctx->AV,eps->mpd,PETSC_FALSE));
 66:     if (nmat>1) PetscCall(BVResize(ctx->W,eps->mpd,PETSC_FALSE));
 67:     PetscCall(BVResize(ctx->P,eps->mpd,PETSC_FALSE));
 68:     PetscCall(BVResize(ctx->G,eps->mpd,PETSC_FALSE));
 69:   }
 70:   PetscCall(DSSetType(eps->ds,DSHEP));
 71:   PetscCall(DSAllocate(eps->ds,eps->ncv));
 72:   PetscCall(EPSSetWorkVecs(eps,1));
 73:   PetscFunctionReturn(PETSC_SUCCESS);
 74: }

 76: static PetscErrorCode EPSSolve_RQCG(EPS eps)
 77: {
 78:   EPS_RQCG       *ctx = (EPS_RQCG*)eps->data;
 79:   PetscInt       i,j,k,ld,nv,ncv = eps->ncv,kini,nmat;
 80:   PetscScalar    *C,*gamma,g,pap,pbp,pbx,pax,nu,mu,alpha,beta;
 81:   PetscReal      resnorm,a,b,c,d,disc,t;
 82:   PetscBool      reset;
 83:   Mat            A,B,Q,Q1;
 84:   Vec            v,av,bv,p,w=eps->work[0];

 86:   PetscFunctionBegin;
 87:   PetscCall(DSGetLeadingDimension(eps->ds,&ld));
 88:   PetscCall(STGetNumMatrices(eps->st,&nmat));
 89:   PetscCall(STGetMatrix(eps->st,0,&A));
 90:   if (nmat>1) PetscCall(STGetMatrix(eps->st,1,&B));
 91:   else B = NULL;
 92:   PetscCall(PetscMalloc1(eps->mpd,&gamma));

 94:   kini = eps->nini;
 95:   while (eps->reason == EPS_CONVERGED_ITERATING) {
 96:     eps->its++;
 97:     nv = PetscMin(eps->nconv+eps->mpd,ncv);
 98:     PetscCall(DSSetDimensions(eps->ds,nv,eps->nconv,0));
 99:     for (;kini<nv;kini++) { /* Generate more initial vectors if necessary */
100:       PetscCall(BVSetRandomColumn(eps->V,kini));
101:       PetscCall(BVOrthonormalizeColumn(eps->V,kini,PETSC_TRUE,NULL,NULL));
102:     }
103:     reset = (eps->its>1 && (eps->its-1)%ctx->nrest==0)? PETSC_TRUE: PETSC_FALSE;

105:     if (reset) {
106:       /* Prevent BVDotVec below to use B-product, restored at the end */
107:       PetscCall(BVSetMatrix(eps->V,NULL,PETSC_FALSE));

109:       /* Compute Rayleigh quotient */
110:       PetscCall(BVSetActiveColumns(eps->V,eps->nconv,nv));
111:       PetscCall(BVSetActiveColumns(ctx->AV,0,nv-eps->nconv));
112:       PetscCall(BVMatMult(eps->V,A,ctx->AV));
113:       PetscCall(DSGetArray(eps->ds,DS_MAT_A,&C));
114:       for (i=eps->nconv;i<nv;i++) {
115:         PetscCall(BVSetActiveColumns(eps->V,eps->nconv,i+1));
116:         PetscCall(BVGetColumn(ctx->AV,i-eps->nconv,&av));
117:         PetscCall(BVDotVec(eps->V,av,C+eps->nconv+i*ld));
118:         PetscCall(BVRestoreColumn(ctx->AV,i-eps->nconv,&av));
119:         for (j=eps->nconv;j<i-1;j++) C[i+j*ld] = PetscConj(C[j+i*ld]);
120:       }
121:       PetscCall(DSRestoreArray(eps->ds,DS_MAT_A,&C));
122:       PetscCall(DSSetState(eps->ds,DS_STATE_RAW));

124:       /* Solve projected problem */
125:       PetscCall(DSSolve(eps->ds,eps->eigr,eps->eigi));
126:       PetscCall(DSSort(eps->ds,eps->eigr,eps->eigi,NULL,NULL,NULL));
127:       PetscCall(DSSynchronize(eps->ds,eps->eigr,eps->eigi));

129:       /* Update vectors V(:,idx) = V * Y(:,idx) */
130:       PetscCall(DSGetMat(eps->ds,DS_MAT_Q,&Q));
131:       PetscCall(BVMultInPlace(eps->V,Q,eps->nconv,nv));
132:       PetscCall(MatDenseGetSubMatrix(Q,eps->nconv,PETSC_DECIDE,eps->nconv,PETSC_DECIDE,&Q1));
133:       PetscCall(BVMultInPlace(ctx->AV,Q1,0,nv-eps->nconv));
134:       PetscCall(MatDenseRestoreSubMatrix(Q,&Q1));
135:       PetscCall(DSRestoreMat(eps->ds,DS_MAT_Q,&Q));
136:       if (B) PetscCall(BVSetMatrix(eps->V,B,PETSC_FALSE));
137:     } else {
138:       /* No need to do Rayleigh-Ritz, just take diag(V'*A*V) */
139:       for (i=eps->nconv;i<nv;i++) {
140:         PetscCall(BVGetColumn(eps->V,i,&v));
141:         PetscCall(BVGetColumn(ctx->AV,i-eps->nconv,&av));
142:         PetscCall(MatMult(A,v,av));
143:         PetscCall(VecDot(av,v,eps->eigr+i));
144:         PetscCall(BVRestoreColumn(eps->V,i,&v));
145:         PetscCall(BVRestoreColumn(ctx->AV,i-eps->nconv,&av));
146:       }
147:     }

149:     /* Compute gradient and check convergence */
150:     k = -1;
151:     for (i=eps->nconv;i<nv;i++) {
152:       PetscCall(BVGetColumn(eps->V,i,&v));
153:       PetscCall(BVGetColumn(ctx->AV,i-eps->nconv,&av));
154:       PetscCall(BVGetColumn(ctx->G,i-eps->nconv,&p));
155:       if (B) {
156:         PetscCall(BVGetColumn(ctx->W,i-eps->nconv,&bv));
157:         PetscCall(MatMult(B,v,bv));
158:         PetscCall(VecWAXPY(p,-eps->eigr[i],bv,av));
159:         PetscCall(BVRestoreColumn(ctx->W,i-eps->nconv,&bv));
160:       } else PetscCall(VecWAXPY(p,-eps->eigr[i],v,av));
161:       PetscCall(BVRestoreColumn(eps->V,i,&v));
162:       PetscCall(BVRestoreColumn(ctx->AV,i-eps->nconv,&av));
163:       PetscCall(VecNorm(p,NORM_2,&resnorm));
164:       PetscCall(BVRestoreColumn(ctx->G,i-eps->nconv,&p));
165:       PetscCall((*eps->converged)(eps,eps->eigr[i],0.0,resnorm,&eps->errest[i],eps->convergedctx));
166:       if (k==-1 && eps->errest[i] >= eps->tol) k = i;
167:     }
168:     if (k==-1) k = nv;
169:     PetscCall((*eps->stopping)(eps,eps->its,eps->max_it,k,eps->nev,&eps->reason,eps->stoppingctx));

171:     /* The next lines are necessary to avoid DS zeroing eigr */
172:     PetscCall(DSGetArray(eps->ds,DS_MAT_A,&C));
173:     for (i=eps->nconv;i<k;i++) C[i+i*ld] = eps->eigr[i];
174:     PetscCall(DSRestoreArray(eps->ds,DS_MAT_A,&C));

176:     if (eps->reason == EPS_CONVERGED_ITERATING) {

178:       /* Search direction */
179:       for (i=0;i<nv-eps->nconv;i++) {
180:         PetscCall(BVGetColumn(ctx->G,i,&v));
181:         PetscCall(STApply(eps->st,v,w));
182:         PetscCall(VecDot(w,v,&g));
183:         PetscCall(BVRestoreColumn(ctx->G,i,&v));
184:         beta = (!reset && eps->its>1)? g/gamma[i]: 0.0;
185:         gamma[i] = g;
186:         PetscCall(BVGetColumn(ctx->P,i,&v));
187:         PetscCall(VecAXPBY(v,1.0,beta,w));
188:         if (i+eps->nconv>0) {
189:           PetscCall(BVSetActiveColumns(eps->V,0,i+eps->nconv));
190:           PetscCall(BVOrthogonalizeVec(eps->V,v,NULL,NULL,NULL));
191:         }
192:         PetscCall(BVRestoreColumn(ctx->P,i,&v));
193:       }

195:       /* Minimization problem */
196:       for (i=eps->nconv;i<nv;i++) {
197:         PetscCall(BVGetColumn(eps->V,i,&v));
198:         PetscCall(BVGetColumn(ctx->AV,i-eps->nconv,&av));
199:         PetscCall(BVGetColumn(ctx->P,i-eps->nconv,&p));
200:         PetscCall(VecDot(av,v,&nu));
201:         PetscCall(VecDot(av,p,&pax));
202:         PetscCall(MatMult(A,p,w));
203:         PetscCall(VecDot(w,p,&pap));
204:         if (B) {
205:           PetscCall(BVGetColumn(ctx->W,i-eps->nconv,&bv));
206:           PetscCall(VecDot(bv,v,&mu));
207:           PetscCall(VecDot(bv,p,&pbx));
208:           PetscCall(BVRestoreColumn(ctx->W,i-eps->nconv,&bv));
209:           PetscCall(MatMult(B,p,w));
210:           PetscCall(VecDot(w,p,&pbp));
211:         } else {
212:           PetscCall(VecDot(v,v,&mu));
213:           PetscCall(VecDot(v,p,&pbx));
214:           PetscCall(VecDot(p,p,&pbp));
215:         }
216:         PetscCall(BVRestoreColumn(ctx->AV,i-eps->nconv,&av));
217:         a = PetscRealPart(pap*pbx-pax*pbp);
218:         b = PetscRealPart(nu*pbp-mu*pap);
219:         c = PetscRealPart(mu*pax-nu*pbx);
220:         t = PetscMax(PetscMax(PetscAbsReal(a),PetscAbsReal(b)),PetscAbsReal(c));
221:         if (t!=0.0) { a /= t; b /= t; c /= t; }
222:         disc = b*b-4.0*a*c;
223:         d = PetscSqrtReal(PetscAbsReal(disc));
224:         if (b>=0.0 && a!=0.0) alpha = (b+d)/(2.0*a);
225:         else if (b!=d) alpha = 2.0*c/(b-d);
226:         else alpha = 0;
227:         /* Next iterate */
228:         if (alpha!=0.0) PetscCall(VecAXPY(v,alpha,p));
229:         PetscCall(BVRestoreColumn(eps->V,i,&v));
230:         PetscCall(BVRestoreColumn(ctx->P,i-eps->nconv,&p));
231:         PetscCall(BVOrthonormalizeColumn(eps->V,i,PETSC_TRUE,NULL,NULL));
232:       }
233:     }

235:     PetscCall(EPSMonitor(eps,eps->its,k,eps->eigr,eps->eigi,eps->errest,nv));
236:     eps->nconv = k;
237:   }

239:   PetscCall(PetscFree(gamma));
240:   PetscFunctionReturn(PETSC_SUCCESS);
241: }

243: static PetscErrorCode EPSRQCGSetReset_RQCG(EPS eps,PetscInt nrest)
244: {
245:   EPS_RQCG *ctx = (EPS_RQCG*)eps->data;

247:   PetscFunctionBegin;
248:   if (nrest==PETSC_DEFAULT) {
249:     ctx->nrest = 0;
250:     eps->state = EPS_STATE_INITIAL;
251:   } else {
252:     PetscCheck(nrest>0,PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Reset parameter must be >0");
253:     ctx->nrest = nrest;
254:   }
255:   PetscFunctionReturn(PETSC_SUCCESS);
256: }

258: /*@
259:    EPSRQCGSetReset - Sets the reset parameter of the RQCG iteration. Every
260:    nrest iterations, the solver performs a Rayleigh-Ritz projection step.

262:    Logically Collective

264:    Input Parameters:
265: +  eps - the eigenproblem solver context
266: -  nrest - the number of iterations between resets

268:    Options Database Key:
269: .  -eps_rqcg_reset - Sets the reset parameter

271:    Level: advanced

273: .seealso: EPSRQCGGetReset()
274: @*/
275: PetscErrorCode EPSRQCGSetReset(EPS eps,PetscInt nrest)
276: {
277:   PetscFunctionBegin;
280:   PetscTryMethod(eps,"EPSRQCGSetReset_C",(EPS,PetscInt),(eps,nrest));
281:   PetscFunctionReturn(PETSC_SUCCESS);
282: }

284: static PetscErrorCode EPSRQCGGetReset_RQCG(EPS eps,PetscInt *nrest)
285: {
286:   EPS_RQCG *ctx = (EPS_RQCG*)eps->data;

288:   PetscFunctionBegin;
289:   *nrest = ctx->nrest;
290:   PetscFunctionReturn(PETSC_SUCCESS);
291: }

293: /*@
294:    EPSRQCGGetReset - Gets the reset parameter used in the RQCG method.

296:    Not Collective

298:    Input Parameter:
299: .  eps - the eigenproblem solver context

301:    Output Parameter:
302: .  nrest - the reset parameter

304:    Level: advanced

306: .seealso: EPSRQCGSetReset()
307: @*/
308: PetscErrorCode EPSRQCGGetReset(EPS eps,PetscInt *nrest)
309: {
310:   PetscFunctionBegin;
312:   PetscAssertPointer(nrest,2);
313:   PetscUseMethod(eps,"EPSRQCGGetReset_C",(EPS,PetscInt*),(eps,nrest));
314:   PetscFunctionReturn(PETSC_SUCCESS);
315: }

317: static PetscErrorCode EPSReset_RQCG(EPS eps)
318: {
319:   EPS_RQCG       *ctx = (EPS_RQCG*)eps->data;

321:   PetscFunctionBegin;
322:   PetscCall(BVDestroy(&ctx->AV));
323:   PetscCall(BVDestroy(&ctx->W));
324:   PetscCall(BVDestroy(&ctx->P));
325:   PetscCall(BVDestroy(&ctx->G));
326:   ctx->allocsize = 0;
327:   PetscFunctionReturn(PETSC_SUCCESS);
328: }

330: static PetscErrorCode EPSSetFromOptions_RQCG(EPS eps,PetscOptionItems *PetscOptionsObject)
331: {
332:   PetscBool      flg;
333:   PetscInt       nrest;

335:   PetscFunctionBegin;
336:   PetscOptionsHeadBegin(PetscOptionsObject,"EPS RQCG Options");

338:     PetscCall(PetscOptionsInt("-eps_rqcg_reset","Reset parameter","EPSRQCGSetReset",20,&nrest,&flg));
339:     if (flg) PetscCall(EPSRQCGSetReset(eps,nrest));

341:   PetscOptionsHeadEnd();
342:   PetscFunctionReturn(PETSC_SUCCESS);
343: }

345: static PetscErrorCode EPSDestroy_RQCG(EPS eps)
346: {
347:   PetscFunctionBegin;
348:   PetscCall(PetscFree(eps->data));
349:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSRQCGSetReset_C",NULL));
350:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSRQCGGetReset_C",NULL));
351:   PetscFunctionReturn(PETSC_SUCCESS);
352: }

354: static PetscErrorCode EPSView_RQCG(EPS eps,PetscViewer viewer)
355: {
356:   EPS_RQCG       *ctx = (EPS_RQCG*)eps->data;
357:   PetscBool      isascii;

359:   PetscFunctionBegin;
360:   PetscCall(PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii));
361:   if (isascii) PetscCall(PetscViewerASCIIPrintf(viewer,"  reset every %" PetscInt_FMT " iterations\n",ctx->nrest));
362:   PetscFunctionReturn(PETSC_SUCCESS);
363: }

365: SLEPC_EXTERN PetscErrorCode EPSCreate_RQCG(EPS eps)
366: {
367:   EPS_RQCG       *rqcg;

369:   PetscFunctionBegin;
370:   PetscCall(PetscNew(&rqcg));
371:   eps->data = (void*)rqcg;

373:   eps->useds = PETSC_TRUE;
374:   eps->categ = EPS_CATEGORY_PRECOND;

376:   eps->ops->solve          = EPSSolve_RQCG;
377:   eps->ops->setup          = EPSSetUp_RQCG;
378:   eps->ops->setupsort      = EPSSetUpSort_Default;
379:   eps->ops->setfromoptions = EPSSetFromOptions_RQCG;
380:   eps->ops->destroy        = EPSDestroy_RQCG;
381:   eps->ops->reset          = EPSReset_RQCG;
382:   eps->ops->view           = EPSView_RQCG;
383:   eps->ops->backtransform  = EPSBackTransform_Default;
384:   eps->ops->setdefaultst   = EPSSetDefaultST_GMRES;

386:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSRQCGSetReset_C",EPSRQCGSetReset_RQCG));
387:   PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSRQCGGetReset_C",EPSRQCGGetReset_RQCG));
388:   PetscFunctionReturn(PETSC_SUCCESS);
389: }